

Change Point Framework						
For fixed $\tau < T$, for all $i \in [n], t \in \{1 - m, \dots T\}$,						
$y_i^t = \begin{cases} f(\boldsymbol{x}_i^t) + \epsilon_i^t, & t \leq \tau & \text{``in-control''} \\ h(\boldsymbol{x}_i^t) + \epsilon_i^t, & t > \tau & \text{``out-of-control''} \\ \end{cases}$ where $t \leq 0$ denotes historical, known IC profiles.	$H_0: f^0 = f^1 = \dots = f^1$ $H_a: f^0 = f^1 = \dots = f^1$					
Performanc	e Metrics					

- \checkmark Nonlinear f

Profile Monitoring via Eigenvector Perturbation

Takayuki Iguchi Andrés F. Barrientos Eric Chicken Debajyoti Sinha

Florida State University, Tallahassee, FL

nvector	Eigenvalue		
$=\frac{1}{\sqrt{w}}1$	$1 + \gamma_1(w - 1)$		
$e_j, j \in [w]$	$1-\gamma_1$		

$$ilde{m{v}} \propto \xi egin{bmatrix} m{1} \ m{0} \end{bmatrix} + egin{bmatrix} m{0} \ m{1} \end{bmatrix}$$

 $\boldsymbol{e}_{i}^{\top}(\boldsymbol{v}-\tilde{\boldsymbol{v}}) \rightarrow N(0,\cdot)$ Cape et al.[1] UCL = (1 - c)th normal quantile,

In-control profile	m	ARL_0^*	Finished by $T = 10^7$	Lower bound on <i>ARL</i> ₀
quadratic	20	3947093	35	7881483
linear	20	2553138	37	7244662
quadratic	40	4362645	29	8365168
linear	40	2815431	52	7068576

Table 1. Lower bounds on the ARL_0 using in-control profiles from [2]

Method	ARL_0	au	Range of observed FAR	Range of observed <i>ARL</i> ₁	Fast Calibration?	Unknown <i>f</i> allowable?
Li et al.[3]	200	30	(0.17, 0.37)	(4.24, 4.86)	No	No
	370	30	(0.07, 0.34)	(4.37, 5.39)	No	No
lguchi et al.[2]	200	30	(0.07, 0.25)	(1, 2.44)	No	No
	370	30	(0.01, 0.11)	(1, 2.75)	No	No
Eigenvector	200	30	(0.17, 0.69)	(1,1)	No	No
Perturbation	370	30	(0.01, 0.55)	(1, 1)	No	No
	$> 7 \times 10^6$	30	(0, 0)	(1, 1)	Yes	Yes
	$> 7 \times 10^{6}$	10^{4}	(0, 0.01)	(1, 1)	Yes	Yes

Table 2. Performance comparison using a subset of the profile combinations from [2]

Simulations Study: When does performance degrade? Level **0, 30 ,** 10^4 128, 256, 512 In-control: $f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{a}^{\top} \mathbf{x}$ 20, 40 1, 2 $\overline{m/w}$ Out-of-control direction: $g(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x} + \boldsymbol{b}^{\top} \boldsymbol{x}$ SNR 3, 5 $\frac{\operatorname{Var}(f)}{\rho(f,h)}$ 2,4,6 Out-of-control: $h(\boldsymbol{x}) = \nu f(\boldsymbol{x}) + (1 - \nu)g(\boldsymbol{x})$ 0.75, 0.9 $\nu \in (0, 1), \nu > 1$ convexity

Let $oldsymbol{A},oldsymbol{B}\in\mathbb{R}^{25 imes25}$, $oldsymbol{a},oldsymbol{b}\in\mathbb{R}^{25}$.

- 2019.
- and Reliability Engineering International, 37(7):3004–3017, 2021.
- Reliability Engineering International, 35(1):127–135, 2019.
- 102(2):315-323, may 2014.

Department of Defense, or the U.S. Government.

Simulations Study: Wins against competitors

References

[1] J Cape, M Tang, and C E Priebe. Signal-plus-noise matrix models: eigenvector deviations and fluctuations. Biometrika, 106(1):243–250,

[2] Takayuki Iguchi, Andrés F. Barrientos, Eric Chicken, and Debajyoti Sinha. Nonlinear profile monitoring with single index models. *Quality*

[3] Chung I. Li, Jeh Nan Pan, and Chun Han Liao. Monitoring nonlinear profile data using support vector regression method. *Quality and*

[4] Yi Yu, Tengyao Wang, and Richard J. Samworth. A useful variant of the Davis-Kahan theorem for statisticians. Biometrika,

The views expressed in this poster are those of the author and do not reflect the official policy or position of the United States Air Force,