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Definition (Profile)

A profile is a noise perturbed functional relationship such that

yt
i = f (xt

i) + εt
i, i ∈ {1, . . . , n} = [n], t = 1, 2, . . .

where yt
i ∈ R is a noisy response and xt

i ∈ Rd are known predictors.

Change Point Framework

For fixed τ < T , for all i ∈ [n], t ∈ {1 − m, . . . T},

yt
i =

{
f (xt

i) + εt
i, t ≤ τ “in-control”

h(xt
i) + εt

i, t > τ “out-of-control”

where t ≤ 0 denotes historical, known IC profiles.

H0 : f0 = f1 = · · · = fT

Ha : f0 = f1 = · · · = f τ 6= f τ+1 = · · · = fT

Performance Metrics
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Goals

Model Assumptions

X Nonlinear f

X Nonparametric

X Multivariate predictor

% Predictors can change during monitoring

Performance

X Computationally fast

X Low FAR even at large τ

X Fast detection (low ARL1)

Eigenvector Perturbation

General Setting

Define M such that

M = M̃ + E

where M̃ ∈ Rw×w is fixed and E is random.

Matrix M M̃

Eigenvectors v1, . . . , vw ṽ1, . . . , ṽw

Our Setting

Define E such that

R = E[R] + E

where R is a sample correlation matrix of

responses {yT−w+1, . . . , yT }
Matrix R E[R]

Leading eigenvector v ṽ

Eigenvector Perturbation Question

“Under certain assumptions on M̃ and E, how ‘far’ can vj be from ṽj?”

Main Idea

All w Profiles are In-control

E[R] =
Eigenvector Eigenvalue

ṽ = 1√
w

1 1 + γ1(w − 1)
e1 − ej, j ∈ [w] 1 − γ1

Mix of In-control and Out-of-Control

E[R] = ṽ ∝ ξ

[
1
0

]
+
[
0
1

]
where ξ is the root of a certain quadratic.

Monitoring Statistic

As v ≈ ṽ, ||v− 1√
w

1||2 is small under IC conditions and large under amix of IC &OOC conditions.

Fixing aWindowing Problem

Denote R(k) as R but with the oldest k profiles replaced by a sample of k historical profiles.

Example: w = 40, τ = 60, and ṽ(k) is the leading eigenvector of E[R(k)].

T = 60 T = 80 T = 100 T = 120

E[R ]

∣∣∣∣ṽ − 1√
w

1
∣∣∣∣

2 0 0.153 0 0

E[R(10)]

∣∣∣∣ṽ(10) − 1√
w

1
∣∣∣∣

2 0 0.153 0.171 0.171

E[R(30)]

∣∣∣∣ṽ(30) − 1√
w

1
∣∣∣∣

2 0 0.281 0.281 0.281

Modified Monitoring Statistic
Consider a set of L almost evenly spaced

values in {0, . . . , w},

K =
{

1,
⌊w

L

⌋
, 2

⌊w

L

⌋
, . . . , (L − 2)

⌊w

L

⌋
, w − 1

}
.

The monitoring statistic with the new

windowing procedure is

max
k∈K

∣∣∣∣v(k) − 1√
w

1
∣∣∣∣

2.

Control Limit via a Quantile Trick

log eigenvector perturbation

Yu et al. bound
True Supremeum
UCL

ARL0 = ∞

ARL0 < ∞

e>
j (v − ṽ) → N(0, ·) Cape et al.[1]

UCL = (1 − c)th normal quantile,

c small (e.g., 10−14)

Simulations Study: Wins against competitors

In-control profile m ARL∗
0 Finished by T = 107 Lower bound on ARL0

quadratic 20 3947093 35 7881483

linear 20 2553138 37 7244662

quadratic 40 4362645 29 8365168

linear 40 2815431 52 7068576

Table 1. Lower bounds on the ARL0 using in-control profiles from [2]

Method ARL0 τ
Range of

observed FAR

Range of

observed ARL1
Fast

Calibration?

Unknown f
allowable?

Li et al.[3]
200 30 (0.17, 0.37) (4.24, 4.86) No No

370 30 (0.07, 0.34) (4.37, 5.39) No No

Iguchi et al.[2]
200 30 (0.07, 0.25) (1, 2.44) No No

370 30 (0.01, 0.11) (1, 2.75) No No

Eigenvector 200 30 (0.17, 0.69) (1, 1) No No

Perturbation 370 30 (0.01, 0.55) (1, 1) No No

> 7 × 106 30 (0, 0) (1, 1) Yes Yes

> 7 × 106 104 (0, 0.01) (1, 1) Yes Yes

Table 2. Performance comparison using a subset of the profile combinations from [2]

Simulations Study: When does performance degrade?

Let A, B ∈ R25×25, a, b ∈ R25.

In-control: f (x) = x>Ax + a>x

Out-of-control direction: g(x) = x>Bx + b>x

Out-of-control: h(x) = νf (x) + (1 − ν)g(x)

Factor Level

τ 0, 30 , 104

n 128, 256, 512

m 20, 40

m/w 1, 2

SNR 3, 5

Var(f ) 2,4,6

ρ(f, h) 0.75, 0.9

convexity ν ∈ (0, 1), ν > 1
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