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JMP Reliability Platforms – History & Status


• 15+yrs of collaboration with William Meeker.


• JMP now supports a wide range of reliability
related products.
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JMP Reliability Products for Non-repairable


• Life Distribution


• Survival


• Reliability Forecast


• Fit Life by X


• Parametric Survival


• Cumulative Damage


• Degradation


• Destructive Degradation


• Test Plan


• Demonstration Plan


• ALT Design


• Reliability Block Diagram


Life Distribution


Warranty


System Design


Time-to-failure 
data and design


ALT data
and design


Degradation
data


System Reliability
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JMP Reliability Products for Repairable


• Recurrence Analysis


• Reliability Growth


• Repairable Systems 
Simulation


Life Distribution


Poisson Process


Reliability Block Diagram


Event Action Sub-diagram


Recurrence Analysis


Reliability Growth


Repairable Systems 
Simulation
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Data Types & Platforms
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Objective Platform Name(s) Applicable Circumstance


Obtain Failure Probability of a 


System


Life Distribution Time-to-event data


Fit Life by X Time-to-event data with one time-


invariant factor


Cumulative Damage Time-to-event data with one time-


varying factor


Parametric Survival Time-to-event with multiple time-


invariant Factors


Repeated Measures Degradation Degradation data from non-


destructive experiments or


observation


Destructive Degradation Degradation data from destructive


experiments or observation


Track Reliability of a Process


Recurrence Data Analysis Counting process data with multiple


covariates


Reliability Growth Counting process data for project


development process.







Models within Platforms
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Platform Models


Life Distribution Numerous distribution types


Competing Cause


Mixture
Fit Life by X Numerous distribution types and different


acceleration mechanismsCumulative Damage


Repeated Measures Degradation Different degradation mechanisms


Destructive Degradation Different degradation mechanisms


Recurrence Data Analysis Different point process types


Reliability Growth Different application-oriented point process types
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Bayesian Methods for Reliability Data (1)


• Reliability data can be scarce. We need to observe failure events, but
• Sample size can be small.


• Experiment duration can be short.


• Subjects can be too reliable,  so duration will be relatively too short.


• When data are scarce, conclusion on reliability can be unrealistically 
conservative.


• Bayesian Methods can incorporate additional information
• If the information is trustworthy, and conclusion on reliability can be more 


realistic.


• A challenge is to have trustworthy information.
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Bayesian Methods for Reliability Data (2)


• Reliability models can be challenging, due to non-linearity.
• Challenging to fit using traditional statistical inference methods.


• There are competing traditional statistical inference methods, and it is 
difficult to justify or evaluate their differences.


• Bayesian Methods provides a unified approach. No ambiguity.
• And it is flexible, without the need to invent new wheels for new problems.


• A challenge is that it requires computing power and has steep 
learning curve.
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Tutorial Plan


• Fundamental Consensus on Censored Data Formats in JMP


• Bayesian Method in Life Distribution
• Rocket Motor


• Bayesian Method in Fit Life by X
• IC Device


• Bayesian Method in Repeated Measures Degradation
• Alloy-A


• Device B
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Consensus on Data Formats







Censored Data Formats in JMP


• Four Types: Failure, Right Censored, Left Censored, Interval Censored


• Two Formats: Right-Censor Format. Two-column Format.
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Censored Data Formats in JMP


• Failure, Right Censored, Left Censored, Interval Censored
• (A) Failure: failed at an exact time.


• (B) Right censored at time 𝑡: failed after time 𝑡.


• (C) Left censored at time 𝑡: failed before time 𝑡.


• (D) Interval censored between 𝑡𝐿 and 𝑡𝑅: failed between time 𝑡𝐿 and 𝑡𝑅


• In the case of time to event, 𝑡 > 0, Failure, Left Censored, and 
Interval Censored all carry some information about failure time to 
different extents of measurement accuracy.
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Censored Data Formats and Launch Dialog
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Bayesian Method


Data


Model 𝑓 with 
Parameter 𝜃


Prior Distribution 
of 𝜃


Likelihood


Bayes’ 
Theorem


Posterior 
Distribution of 𝜃


…


…


…


…


MLE
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Bayesian Method – Inside the Blackbox


• Something simple: Rejection Method.


• The well established: BUGS; Metropolis-Hastings Algo. 


• Something new: Hamiltonian Monte Carlo.


• … a lot of variations
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Bayesian Method – In JMP Reliability Prod.


• Life Distribution. (Rejection Method & MH Method)


• Fit Life by X. (Rejection Method & MH Method)


• Repeated Measures Degradation. (MH Method)


• Why still use Rejection Method?
• Rejection rate is not always high, especially failures are scarce.


• Rejection method is the benchmark for testing other methods.
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Tutorial by Examples


• Rocket Motor


• IC Device


• Alloy A


• Device B
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Conclusion


• JMP reliability products are comprehensive.


• JMP reliability products are mature.


• The implemented approaches for analyzing reliability data are 
rigorous, from the statistical interference perspective.


• The Bayesian methods implemented in JMP reliability products are at 
the frontier in research.


• The Bayesian methods implemented in JMP reliability products are 
accessible, in terms of use and explanation.
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Thank you!
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A Tour of JMP Reliability Platforms and 
Bayesian Methods for Reliability Data 


 


Peng Liu, Ph.D., Principal Research Statistician Developer, JMP Statistical Discovery LLC. 


Abstract 
JMP is a comprehensive, visual, and interactive statistical discovery software with a carefully curated 


graphical user interface designed for statistical discovery. The software is packed with traditional and 


modern statistical analysis capabilities and many unique innovative features. The software hosts several 


suites of tools that are especially valuable to the DATAWorks’s audience. The software includes suites for 


Design of Experiments, Quality Control, Process Analysis, and Reliability Analysis. JMP has been building 


its reliability suite for the past fifteen years. The reliability suite in JMP is a comprehensive and mature 


collection of JMP platforms. The suite empowers reliability engineers with tools for analyzing time-to-


event data, accelerated life test data, observational reliability data, competing cause data, warranty data, 


cumulative damage data, repeated measures degradation data, destructive degradation data, and 


recurrence data. For each type of data, there are numerous models and one or more methodologies that 


are applicable based on the nature of data. In addition to reliability data analysis platforms, the suite also 


provides capabilities of reliability engineering for system reliability from two distinct perspectives, one for 


non-repairable systems and the other for repairable systems. The capability of JMP reliability suite is also 


at the frontier of advanced research on reliability data analysis. Inspired by the research by Prof. William 


Meeker at Iowa State University, we have implemented Bayesian inference methodologies for analyzing 


three most important types of reliability data. The tutorial will start with an overall introduction to JMP’s 


reliability platforms. Then the tutorial will focus on analyzing time-to-event data, accelerated life test data, 


and repeated measures degradation data. The tutorial will present analysis of these types of reliability 


data using traditional methods, and highlight when, why, and how to analyze them in JMP using Bayesian 


methods. 


Biographies  
Peng Liu is a Principal Research Statistician Developer at JMP Statistical Discovery LLC. He holds a Ph.D. in 


statistics from NCSU. He has been working at JMP since 2007. He specializes in computational statistics, 


software engineering, reliability data analysis, reliability engineering, time series analysis, and time series 


forecasting. He is responsible for developing and maintaining all JMP platforms in the above areas. He has 


a broad interest in statistical analysis research and software product development. 


Introduction 
JMP’s modern reliability data analysis capabilities was initiated by the pioneering work of the company 


founder John Sall as early as in JMP 3. By the time the author took on the task of expanding the suite of 


products in 2007, JMP had four platforms that include Survival, Parametric Survival, Recurrence Analysis, 


and Proportional Hazards. In the last fifteen years, JMP added over a dozen new platforms, to fulfill the 


need of reliability engineers, and meanwhile stay on the frontier of reliability data analysis method’s 







research. Our achievements were propelled by our collaboration with Prof. William Meeker at Iowa State 


University. During our development, we constantly consulted Prof. Meeker on the directions of future 


development, and the rigorousness of methodologies’ implementation. The books by him and his co-


authors are the most important references of our development work. 


JMP’s reliability platforms now cover three areas: reliability data analysis, design of experiment for 


reliability, reliability engineering. The author is responsible for the development in data analysis and 


engineering areas. The suite of reliability platforms has made JMP a leading software vendor in the 


software market for reliability analysis and engineering. 


This tutorial is developed to provide a brief overview about the JMP reliability platforms, with a keen 


emphasis on the Bayesian method applications among them. The tutorial will start with a method of 


classification of JMP reliability platforms. After the temptation of leaving the audience an impression 


about the vast available capabilities of JMP reliability platforms, the tutorial will turn to Bayesian method 


applications among them. It will include the following parts. First, the tutorial will establish a consensus 


on the data format for censored data in JMP software. Then, the tutorial will provide background 


information on Bayesian method. After that, the tutorial will go over four examples, which span three 


areas of applications. 


Classifications of JMP Reliability Platforms 
Reliability products in JMP can be categorized in different ways. One is by a characteristic of physical 


products that individual JMP reliability platforms are designed to analyze. This characteristic is whether a 


physical product is repairable or not. By such, these are the two lists. 


Platforms for Non-repairable Systems Platforms for Repairable Systems 


Life Distribution Recurrence Data Analysis 


Survival Reliability Growth 


Reliability Forecast Repairable Systems Simulation 


Fit Life by X  


Parametric Survival  


Cumulative Damage  


Degradation  


Destructive Degradation  


Repeated Measures Degradation  


Reliability Life Plan  


Reliability Demonstration Plan  


ALT Design  


Reliability Block Diagram  
Table 1 JMP Reliability Platforms 


Although there are many platforms, seemingly for different purposes, many of them lead to answers to a 


common question, which is the probability that a system, vehicle, machine, device, and so on, will perform 


its intended function under encountered operating conditions, for a specific period of time (Meeker and 


Escobar 1998, 2022). With an answer to that question, subsequent tasks can be carried out, such as 


warranty forecasting, system reliability design, etc. 







The necessity of having variety of platforms is due to the number of different circumstances that different 


types of data are available, for which different statistical methodologies are required. From this 


perspective, some of JMP reliability products can be categorized in the following way. 


Objective Platform Name(s) Applicable Circumstance  


Obtain Failure Probability 
of a System 


Life Distribution Time-to-event data 


Fit Life by X Time-to-event data with one time-
invariant factor 


Cumulative Damage Time-to-event data with one time-
varying factor 


Parametric Survival Time-to-event with multiple time-
invariant Factors 


Repeated Measures Degradation Degradation data from non-
destructive experiments or 
observation 


Destructive Degradation Degradation data from destructive 
experiments or observation 


Track Reliability of a 
Process 


Recurrence Data Analysis Counting process data with multiple 
covariates 


Reliability Growth Counting process data for project 
development process. 


Table 2 Applicable Circumstances of JMP Reliability Platforms 


Within individual JMP reliability products, there might be several different models, and the following is a 


list which describes what are different models within a reliability platform for some platforms. 


 Platform Models 


Life Distribution Numerous distribution types; Competing Cause; Mixture 


Fit Life by X Numerous distribution types and different acceleration 
mechanisms Cumulative Damage 


Repeated Measures Degradation Different degradation mechanisms 


Destructive Degradation Different degradation mechanisms 


Recurrence Data Analysis Different point process types 


Reliability Growth Different application-oriented point process types 
Table 3 Modeling Varieties within Platforms 


To provide a taste of the variety of reliability products in JMP, Figure 1 is a collection of some screenshots 


from individual platforms. 


In the end, there are different statistical methodologies in several platforms for the same type of data, 


same type of models. Maximum likelihood method is the dominant approach to address almost all the 


need for analyzing reliability data. Bayesian methods have been implemented in three platforms for all or 


part of the supported models. The three platforms are: Life Distribution, Fit Life by X, and Repeated 


Measures Degradation. The next section starts our emphasis on Bayesian method applications in JMP for 


reliability data analysis. 


 







 


Figure 1 Screenshots from JMP Reliability Platforms 


Bayesian Methods for Reliability Data Analysis 
Traditionally, Bayesian methods were thought of as alternatives to frequentist’s approaches, mainly the 


maximum likelihood approach. Experts in Bayesian methods were usually specially trained separately 


from frequentist statisticians. The mathematical requirements for obtaining such skills were high, due to 


the necessity of derivations of highly sophisticated models. The practicality of applying Bayesian methods 


was low because many solutions lack closed form formulas and require computational tools that were not 


available. Even though some computational tools became available, the computers were not powerful 


enough for non-trivial problems. 


In the context of reliability data analysis, Bayesian methods are needed naturally in circumstances when 


failures are scarce. There is a well-known method called Weibayes (Nelson 1985), which is arguably non-


Bayesian at all, but reminds us of the need of Bayesian approaches when there is little information in data. 


Under the Bayesian framework, additional information can be brought into modeling besides what is 


already in the data, by such one can draw more useful conclusions. 


Besides the circumstances when data is scarce, Bayesian methods for reliability data analysis are more 


attractive than frequentist’s approaches when the models are more complex, non-linear, or both. In such 


situations, frequentist’s approaches face increasing challenges in inference which require expensive cost 


in method development and computational requirements. Meanwhile, due to lack of uniqueness of 


frequentist’s approaches given a specific model, the interpretation of results becomes quickly confusing. 


On the other hand, Bayesian approaches address all the issues with ease. 


What remains challenging for Bayesian approaches is the computational cost in terms of time. Because it 


has become a common practice to use so called Markov chain Monte Carlo (MCMC) to conduct Bayesian 


inference, and MCMC methods require lengthy simulations. However, with the increasing power of 







computers and accessibility to modern software, such a challenge is no longer an absolute barrier for 


conducting Bayesian analysis. 


Consensus on Censored Data Format in JMP 
Censored data is probably the first factor that separates reliability data analysis from other types of data 


analysis. Many reliability data records time-to-event observations. Some of such observations even have 


their special names in different contexts. For example, here are some more common words that describe 


censored observations: survived, suspended, runout, which may sound more familiar to some people. 


The three words all mean right-censoring type, which indicates that failure does not occur at the 


observation time. Other than that, there are left-censoring and interval-censoring types, which indicate 


failure has occurred, but the exact time is unknown. For left-censoring, it is a type which indicates the 


failure occurs before the observation time. And for interval-censoring, it is a type which indicates the 


failure occurs within a time interval. In addition to three types of censoring, exact failure time observations 


observe failure time precisely. For any given censored data set, there might be one or more types of 


observations. 


JMP reliability platforms expect one of the two types of data formats. The first is known as the right-


censored data format. And the other is known as the two-column censored data format. For the right-


censored data format, the time-to-event data is represented by one or two columns. If it is represented 


by one data column, the column records exact failure times. If it is represented by two data columns, the 


first column records time-to-event, and the second column records whether corresponding events are 


failures or right-censoring observations. For example, the partial screenshot on the left in Figure 2 is for 


Appliance sample data in JMP, and the column “Time Cycles” records exact failure times. The partial 


screenshot on the right in Figure 2 is for Fan sample data in JMP, and the column “Time” records time-to-


event, and the column “Censor” indicates whether the event is a failure or a right censoring observation. 


    


Figure 2 Appliance Sample Data and Fan Sample Data 


Therefore, using the right-censored data format, one can represent two types of censoring schemes. One 


is exact failure data. And the other is a mix of failures and right censored observations. Is it possible that 


all observations are right-censored? Yes, it is possible, and in that case, maximum likelihood estimate does 


not exist. And that is one of several scenarios that have been discussed in Nelson 1985, in which the 


Weibayes method was proposed. 







The second censored data format that JMP recognizes is the two-column format, in which case both 


columns record time values. And different arrangements of the two time values in a row indicate 


individual censoring schemes. There are four valid arrangements. The first arrangement is that two time 


values are valid and equal. That indicates an exact failure observation. The second arrangement is that 


the value on the left is non-missing, and the value on the right is missing. That indicates a right censored 


observation. The third arrangement is that the value on the left is missing, and the one on the right is non-


missing. That indicates a left-censored observation. The last arrangement is that the two time values are 


valid (non-missing) and unequal, with the left value is less than the value on the right. That indicates an 


interval censored observation. Figure 3 is a partial screenshot of the Microprocessor Data in JMP. 


 


Figure 3 Microprocess Data 


To configure JMP launch dialog, use one of the following three types to specify for corresponding 


censoring schemes and data formats. 


Specify launch dialog for exact failure data. 


 


Specify launch dialog for right-censored data with 
a Censor indicator column. 


 


Specify launch dialog for arbitrary censoring 
schemes with two-column format data. 


 
Figure 4 Launch Dialog Configurations for Different Data Format 


  







Bayesian Methods 
This section attemps to lay a fundation for the remaining discussion. It does not attempt to be even an 


introduction to the Bayesian methods. The information here serves as the necessity to operate the 


Bayesian model fitting for reliability data analysis in JMP. And it also serves as a succint guide for directions 


if one is interested in learning more. 


 


Figure 5 Bayesian Methods 


Figure 5 depicts the critical elements in the Bayesian method framework. As you may see, the approach 


is high related to frequentist’s maximum likelihood method. For maximum likelihood method, one needs 


data and a model with parameter which will form a likelihood function which is a function of one or more 


parameters. Then one would maximize the likelihood function over the parameters. And the parameter 


values that maximizes the function is known as the maximum likelihood estimate (MLE.) For Bayesian 


method, one needs to supply prior distribution for parameters. Prior distribution is a function of the 


parameters as well. Combining likelihood and prior distribution, one then apply the Bayes’ theorem, and 


obtain the corresponding posterior distribition of the parameters. One can then derive subsequent 


quantities from the posterior distribution, which include poterior median, posterior mean, credible 


intervals, etc. 


We will assume that the choice of model is clear. The first important element for conducting a Bayesian 


modeling is to specify prior distribution for parameters. There are at least several technical terms that one 


may need to know, which includes non-informative prior, informative prior, and weakly informative prior. 


There are other important technical terms for types of prior, but they are irrelevant at the moment for 


using the capabilities that are available in JMP reliability platforms. The next several paragraphs describe 


the three types of prior. 


The non-informative prior is a very common term. But it seems to be easily misunderstood, and its 


sophistication is often overlooked, by many. In another word, whether a prior is absolutely non-


information requires careful examination. The remaining discussion will avoid examine whether a prior is 


non-informative.  


The remaining discussion will only refer to weakly informative and informative priors. To distinguish them, 


the author would like to point out that the difference between the two is the amount of information 


contained in the prior, which will influence the posterior distribution differently. By using a weakly 







informative prior, the prior should have little influence on the posterior. Or in another work, if one 


changes the weakly informative prior substantially, but still maintain the weakly informative characteristic 


of the prior, the posterior distribution should not change substantially. By using an informative prior, 


however, one would expect the posterior to be sensitive to the choice of the prior. Or in another workd, 


if one change the informative prior, it is likely to lead to noticeable changes in posterior. 


Bayesian Computation 
The black box in Figure 5 represents the important part in Bayesian methods, which is the computational 


part. In practice, posterior distributions rarely have closed form, and require simulation. In the author’s 


practice, there are mainly four schools of general purposed simulation-based approaches. They are: 


1. Rejection sampling algorithm, 


2. Gibbs sampling algorithm, 


3. Metropolis-Hastings algorithm, 


4. Hamiltonian Monte Carlo algorithm. 


The first three are implemented and applied within JMP reliability products at various places. The last 


method requires substantially more effort than others, such that the author has not attempted to 


implement yet. 


Except for the first method, the remaining three methods require non-trivial software development skills. 


And general purposed implementations are rather sophisticated. Noticeable software includes WinBUGS 


and its variations for Gibbs sampling algorithm, SAS Proc MCMC for the Metropolis-Hastings algorithm, 


and STAN for Hamiltonian Monte Carlo algorithm. 


Gibbs sampling algorithm and Metropolis-Hastings algorithm are mainstream approaches for a very long 


time. Within the last ten years or so, Hamiltonian Monte Carlo algorithm appears to be the most popular 


approach, due to the development of STAN (https://mc-stan.org/), and its access through well-known 


open-source software R (https://www.r-project.org/). 


Regardless of which software to choose, there are some common considerations. They are: 


1. Parameterization of the model, 


2. Configuration of prior distributions, 


3. Efficiency and effectiveness of the simulation, 


4. Diagnostics of the posterior samples. 


Parameterization is usually not a concern in general in Bayesian method literature. For the applicability of 


Bayesian method, however, parameterization is important. It is desirable to have a parameterization, such 


that it is easier to solicit prior from engineers. Such parameterization usually contains parameters that 


have practical meanings to engineers, while the information on individual parameters is independent from 


one another. With such parameterization, configuration of prior distributions is relatively easy for any 


given software.  


All simulation-based approaches mentioned previously have efficiency concerns. A rejection sampling 


algorithm is not efficient if the rejection rate is too high. A Gibbs sampling algorithm is not efficient if some 


parameters are highly correlated. A Metropolis-Hastings algorithm and a Hamiltonian Monte Carlo 
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algorithm may not be efficient and effective if the posterior samples are highly autocorrelated. By knowing 


these concerns, one may prefer one method to another.  


In the end, like many other statistical inference methods, it requires one to be familiar with diagnostics 


and be aware of possible issues before making conclusions and conducting further analysis using the 


posterior samples. 


The next four sections go through four examples to illustrate how to use Bayesian methods to analyze 


three types of reliability data in JMP. 


Rocket Motor 
The rocket-motor (Meeker, et.al. 2022 Chapter 10, Olwell and Sorell 2001) records the status of 20000 


missiles in US Navy’s inventory. Each missile has a rocket motor. Over time, 1940 missiles had been used. 


And among them, three had catastrophic launch failures. Missiles in the inventory have age from one year 


up to about 18 years. 


Engineers and scientists inspected the failures and identified an unexpected failure mode. They are 


concerned that the failure mode may induce unexpected failure rate increase during wear out period. 


There can be a fix by replacing the aging motors, but highly expensive, to be applied to large scale of the 


stockpile. They would like to know the number of missiles that require such fix, based upon the estimated 


failure probability, given age. 


 


Figure 6 Rocket Motor Data 







Figure 6 is a screenshot of the data. The first 16 rows record uses that were normal. And it uses two-


column format to indicate right-censoring situation for these missiles. For example, 106 missiles were 


used one year after manufacturing. And the two-column format indicates they are right-censored, which 


means they did not failure at one year. The last three rows record three failures. And the two-column 


format indicates they are left-censored, which means they failed sometime before use at the 


corresponding recorded time. The Censor Indicator column comes with the original data, which indicates 


left- and right-censoring. Such format is not supported in JMP, and the column will not be used in 


subsequent analysis. 


To start analyzing this data in JMP, first open the data table, then from JMP menu, select Analyze > 


Reliability and Survival > Life Distribution, to bring up the launch dialog. Then configure the dialog as 


follows.  


 


Figure 7 Life Distribution Launch Dialog 


The default report shows the nonparametric estimate of the failure probability function. And a Weibull 


distribution is desired to fit to the data. To fit a Weibull, use the check box or menu item to activate the 


fit, then change the axis scales to reflect a Weibull probability paper.  


 


Figure 8 Life Distribution Choices 







The next step is to look at the estimated failure probability at 20 years. The target is to have no more 


than one percent of failure probability at 20 years. Here, a quick look at the distribution profiler will 


raise the concern about the severity of the situation. 


 


Figure 9 Distribution Profiler 


There are at least two concerns. First, the failure probability at 20 years is alarmingly high. Second, the 


confidence interval of the estimate is extremely wide. The confidence interval in the distribution profiler 


is the Wald type interval, which is less trustworthy for this data with few failures. But using a Likelihood 


confidence interval won’t bring better news. 


 


Figure 10 Likelihood Confidence Interval 


Fortunately, engineers and scientists have some prior knowledge about the plausible range of the Weibull 


shape parameter. MLE is about 8, and that is unrealistically large according to engineers and scientists. 


 


Figure 11 Maximum Likelihood Estimate 







And the range (1, 5) is much more plausible. The next shows how we incorporate that information into 


the model. 


 


Figure 12 Prior Distribution of Weibull Model for Rocket Motors 


The configuration in Figure 12 assigns independent prior distributions to the Weibull shape parameter, 


and 10% quantile. The priors are both Normal distributions. But they are specified in a way, such that it is 


easier to solicit information. The well-known parameters of a Normal distribution are location parameter 


𝜇  and scale parameter 𝜎 . It is, however, not intuitive to transfer knowledge directly to these two 


parameters. It is the range of plausible values that is more common to know. Therefore, the software 


provides an interface which solicits the lower and upper end points of the 99% interval of the distribution.  


In Figure 12, the 99% interval of the Normal prior for Weibull shape parameter is 1 and 5. The range (1, 5) 


is rather informative. The software will translate the information to get values for 𝜇  and 𝜎 . During 


sampling, the effective prior is a truncated Normal, because the quantity needs to be positive. Similarly, 


the 99% interval for the Normal prior for the 10% quantile is (5, 400), or in another word, 10% of units are 


very likely to fail between 5 years and 400 years. That is a rather wide span. In such case, we are assigning 


a so-called weakly informative prior to the quantity. 


You may notice that the software does not list the Weibull scale parameter for soliciting prior. This is 


related to the choice of parameterization that was mentioned previously. There are two reasons that we 


prefer this parameterization, which includes a quantile and Weibull shape parameter. The first reason is 


that the quantile has more practical meaning than the scale parameter, such that engineers and scientists 


have better knowledge about the quantile. The second reason is that the information on the quantile and 


the shape parameter is more independent, such that providing separate prior distributions on quantile 


and shape parameter respectively is very plausible. Now we click “Fit Model” button and generate a report 


(Figure 13). 


The top of the report indicates that the simulation method that draws samples from the posterior 


distribution is Simple Rejection. If the rejection rate becomes high, the software will automatically switch 


to the Metropolis-Hastings random walk algorithm. The Priors outline node section is a copy of the prior 


specification. The Posterior Estimates outline node section reports the summaries of relevant quantities. 


The distribution that we fit is Weibull. The posterior estimates report shows posterior summaries of 


Quantile and Weibull shape, the two quantities that we specify prior distributions. In addition, we provide 







posterior summaries on the location parameter 𝜇 and scale parameter 𝜎. Subsequent computation is 


usually easier by using the (𝜇, 𝜎) parameterization. 


 


Figure 13 Bayesian Estimation of Weibull for Rocket Motors 


Notice there is an Export Monte Carlo Samples hyper link on the side, which is to remind user to inspect 


the posterior samples. Click the hyper link, one will get the posterior samples in a table, and one should 


at least look at the time series plot, or more commonly known as the trace plot in Bayesian literature. The 


task is relatively trivial, if one knows how to launch a platform, and knows where the Time Series menu 


item is under the Analyze menu. In particular, we want to inspect whether the posterior is highly 


autocorrelated. This will not be any issue for rejection sampler. So, we see the autocorrelation is zero. 


 


Figure 14 Time Series and Autocorrelation 







After inspecting the posterior samples, we can conclude that there are no abnormal issues in the posterior, 


and we can proceed to make inference about failure probability at 20 years. Towards the end of the report 


for this model, there are two profilers. We will use the Distribution Profiler to get an estimate of the failure 


probability at 20 years. The estimate is just about one percent, and the credible interval ranges from 


0.001752 to 0.082136. 


 


Figure 15 Profilers 


The result indicates that the situation may not be as bad as what the maximum likelihood estimates imply, 


but it is also not as optimistic as the engineers and scientists wish the situation to be. Ideally, they wish 


the failure probability at 20 years is no more than one percent. But here the upper end of the credible 


interval exceeds that threshold. 


IC Device 
The IC Device data (Meeker, et. al. 2022. Chapter 19) is from a temperature accelerated life test on some 


integrated circuit board. Following is the screenshot of the data. 


 


Figure 16 IC Device Data 







The experiment was conducted under five different temperature levels. Failures only occurred at 250°C 


and 300°C, the two high temperature levels. Observations at other lower temperature levels are right 


censored. It is known that, in this case, acceleration follows the Arrhenius relationship. The interest is in 


the activation energy, and fraction of failures at 100,000 hours at 100°C, which is over 10 years. The 


system is highly reliable. 


Furthermore, it was discovered that the failures at 300°C are due to a failure mode which won’t happen 


under the normal use condition. Therefore, the observations at 300°C must be discarded to avoid 


concluding a wrong model, which would lead to wrong conclusions. 


After discarding the bad observations using exclusion as follows, we launch Fit Life by X platform to analyze 


the data. 


 


Figure 17 IC Device Data with 300°C Group Excluded 


To launch Fit Life by X platform, select Analyze > Reliability and Survival > Fit Life by X. Then configure 


the dialog as follows: 


 


Figure 18 Fit Life by X Launch Dialog 







Click OK, a report is generated, which fits an Arrhenius-Lognormal model. The report includes numerous 


information, which provides different perspectives on the same model. The scatterplot below overlays 


data (markers), fitted Arrhenius relationship (three straight lines), and estimated densities at multiple 


temperature levels. The slope of the straight lines is the activation energy of interest. 


 


Figure 19 Scatterplot in Fit Life by X 


The scatterplot indicates that the fractional failure at 100,000 hours at 100°C is negligible. There are, 


however, issues that indicate that the result is not trustworthy. 


 


Figure 20 Distribution Profiler in Fit Life by X (IC Device MLE) 


First is that the confidence interval is extremely wide for the estimated fractional failure at 100,000 hours 


at 100°C. Second is that the confidence intervals are extremely wide for the parameter estimates, which 


is the fundamental reason why the confidence interval is wide for the fractional failure. All this is because 


the data contains little information about the activation energy. 







With the data alone, the result is not very useful. In practice, if engineers know the failure mode, they 


may have knowledge about the activation energy. In this example, we apply the following settings to 


configure our Bayesian model.  


 


Figure 21 Prior Distribution of Bayesian Model for IC Device 


The software asks for information about three quantities that engineers may have prior information. And 


they are very likely to be independent from one another. As we have noted, the prior distributions are 


specified by using the ends of 99% interval. For this example, we use Lognormal for all three quantities. 


The prior on 𝛽1, the activation energy, is rather informative. And the priors on the other two quantities 


are weakly informative. To determine whether a prior distribution is informative or weakly informative, 


one can make judgement based on the range of the interval. That might be another advantage of using 


intervals to specify prior distributions. One may also want to conduct sensitivity studies to see how 


posterior distributions are influenced by prior distributions. If prior distributions have little influence on 


the posterior distributions, then it should be safe to assume the prior distributions are weakly informative. 


Now click “Fit Model” button to continue the analysis. Like what is shown in the Rocket Motors example, 


a Bayesian model result (Figure 22) in JMP Fit Life by X platform indicates what sampling method was used 


to produce the result. In this example, the method is the rejection-based sampling method. As the 


rejection rate increases, the software will automatically switch to Metropolis-Hastings random walk 


MCMC algorithm and produce subsequent results. 


The next section in the report is a copy of prior distribution settings. And the Posterior Estimates outline 


node summarizes the posterior samples. And there is also a hyper link for one to inspect and export 


posterior samples.  


 


Figure 22 Bayesian Model Result in Fit Life by X 







After seeing posterior samples, we can conclude that there are no abnormalities. And we can proceed to 


draw conclusions about the real interest, which is failure probability at 100,000 hours at 100°C. A look at 


the distribution profiler at the end of the report, with a couple of adjustments to the settings of the two 


axes, we get the following result.  


 


Figure 23 Distribution Profiler in Fit Life by X (IC Device Bayesian Estimation) 


Compared to the extremely wide confidence intervals from maximum likelihood method, here the 


credible interval is much more reasonable given the prior information from engineers. 


This section and the previous section have demonstrated how Bayesian methods are extremely useful 


when the information in data is limited. In such cases, an informative prior on some quantities of the 


model can lead to more useful results that are both trustworthy and useful so that engineers can act upon. 


The next couple sections will demonstrate a different scenario, in which case there is plenty of information 


in the data, but the model is also complex. 


Introduction to Repeated Measures Degradation Model 
The nature of data for this type of analysis consists of multiple units, systems, or subjects. Multiple 


measurements are taken from the individual units over a period. Meanwhile, there may or may not be 


extra factors accompanied. Examples of factors include temperature, humidity, voltage, etc. 


The type of models that are relevant consists of two types of parameters. The first type of parameters can 


be named as population parameters. And the second type of parameters can be named as unit parameters. 


Population parameters are applicable to all units, while unit parameters are only applicable to 


corresponding units. And unit parameters are governed by a portion of population parameters. 


Such data and models are surprisingly common in a diverse range of fields, including agriculture, 


economics, medical, clinical, and reliability, etc. The models can be classified in multiple ways from 


different perspectives. One way of classification is based on whether a model is linear in parameter or not. 


There is a large body of research which focuses on linear models, from frequentist’s perspective. And the 


methodologies are well established and widely accepted among engineers and scientists. There, however, 


are challenges when a model is not linear in parameters. Without going further into the technical details, 


we would like to point out fitting such a model, regardless of linear or non-linear, requires integrating out 


the unit parameters. And integration is not a straightforward task in many situations. In many situations, 


approximation is applied, such that subsequent analyses would face a challenge for interpretation. To 


emphasize, frequentist’s approach heavily relies on the large sample theory. And in various situations and 


steps, such dependence may draw criticism, about accuracy and uniqueness. 







Meanwhile, Bayesian methods handle the integration with ease. And there is only one way to conduct the 


inference, which leads to one result, without ambiguity. The challenging part of the Bayesian approach is 


also computational, but as the computers become more powerful, and available software is accessible, 


the computational challenge is arguably less of an issue. We will illustrate a couple of examples of 


conduction Bayesian estimation in Repeated Measures Degradation platform in JMP. 


Alloy A 
The data records crack propagation over time on 21 specimens of a type of metal alloy. On each specimen, 


there are about a dozen crack length measurements measured at interval of every 10,000 cycles. And the 


measurements stop at around 120,000 cycles.  


 


Figure 24 Alloy A Data 


Figure 11 is a plot of the data. In the plot, individual measurements are drawn as markers. Measurements 


from the same unit are connected by lines. The unit of x-axis is million cycles, and the unit of y-axis is inch. 


The propagation of the crack growth is governed by a theory known as the Paris’ Law. The general form 


of the model is expressed as an ordinary differential equation, as follows: 


𝑑𝜇(𝑡)


𝑑𝑡
= 𝑏1 ⋅ (𝜇(𝑡))


𝑏2
2 . 


The differential equation has two solutions, depending on the value of parameter 𝑏2. Here are the two 


solutions: 
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)
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, 𝑖𝑓 𝑏2 ≠ 2;


𝜇0 ⋅ exp(𝑏1 ⋅ 𝑡)                                  , 𝑖𝑓 𝑏2 = 2.


 


There are two unit-parameters 𝑏1 and 𝑏2. And they are different from unit to unit. In another word, for 


every 21 units in the data, every unit’s crack growth path is governed by its own pair of 𝑏1 and 𝑏2 values.  


Therefore, there are 21 𝑏1 and 21 𝑏2 parameters. Meanwhile, the randomness of 𝑏1 and 𝑏2 is governed 


by a distribution. In our example, the distribution is a bivariate normal distribution. A bivariate normal 


distribution has five parameters, which include two location parameters (𝜇1, 𝜇2), two scale parameters 


(𝜎1, 𝜎2), and one correlation coefficient parameter (𝜌). Governed by a pair of 𝑏1 and 𝑏2 values, the crack 


growth path is not deterministic. In this example, we assume that measurement deviates randomly from 







the path, and the random deviations are i.i.d. normal with zero mean and standard deviation 𝜎𝜖. The six 


parameters 𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜌, and 𝜎𝜖 are population parameters. 


The ultimate interest is in those six parameters, not in the unit parameters. The reason is that one needs 


those six parameters to describe the randomness of the crack growth path. Then a failure distribution for 


metal fatigue can be derived. To get estimates of those six parameters, a frequentist’s approach needs to 


write down the likelihood, which is a function of all unit parameters and population parameters. Then one 


needs to maximize the likelihood with unit parameters integrated out. That is a challenging task to 


calculate the integral while trying to maximize it. 


It is, however, relatively easy for a Bayesian approach. Arguably speaking, to engineers, they only need to 


specify prior distributions to the six parameters. And ideally, a posterior sampling algorithm will take care 


of the rest. That is an important use case of Bayesian inference, which is to explore a complex likelihood 


function. That is what the JMP Repeated Measures Degradation is designed to do by default. By default, 


the software provides a so-called weakly informative prior based on a pilot study about the data. By such, 


the posterior distribution is very likely proportional to the likelihood. Such that, we solve a complex 


problem with ease, with a solution which is close to what a frequentist method would produce, and such 


a frequentist method may not be available. 


In the remaining section, we demonstrate how to estimate the parameters in this Paris model using the 


Bayesian method in JMP Repeated Measures Degradation platform. And, how to use the estimates to 


make further inference that leads to the failure distribution of metal fatigue. 


The Alloy-A data has three columns. Length records the crack length in inches. Speciman indicates 


individual units. And MCycles is the number of cycles in million of cycles. 


 


Figure 25 Alloy A Data 


To launch the platform, select Analyze > Reliability and Survival > Repeated Measures Degradation. Then 


configure the dialog as follows: 







 


Figure 26 Repeated Measures Degradation Launch Dialog 


After clicking OK, the software will produce a report as follows: 


 


Figure 27 Repeated Measures Degradation Default Report 


The default report has an overlay of data and a fitted initial model. There are a couple of panels on the 


top right for transforming either response or time. For our example here, that is not necessary. We don’t 


change them. There is a “Path Definition” panel, inside of which there is a list of available models that 


one can choose. The first model is the simplest model, and it is the default initial model. One, however, 


can easily change the desired model by clicking the radio buttons in Path Definition. The Paris model is 


corresponding to the following radio button: 


 


Figure 28 Paris Model Radio Button 







After clicking this radio button, the plot on the left will change to what is in the following screenshot: 


 


Figure 29 Initial Fit of Paris Model 


The curves are the result of the initial fit of the Paris model to the data. Now click “Go to Bayesian 


Estimate” button below the Path Definition panel. An outline node is then appended to the report. In 


the outline node, there is a Formula Picture and a user interface for one to specify prior distribution and 


other settings. The following is the default for prior distribution specification. 


 


Figure 30 Default Prior Settings for Alloy A to Fit  Paris Model 


For this example, with the belief that the unit parameters are bivariate normal, one only needs to click 


the Fit Model button not far below the prior specification. It appears that one does not even need to 


specify the prior distribution. 


Under the hood, the software makes educated guess about the plausible range of the parameters of the 


prior distribution. Then expand the range to make the prior even weaker in information that it contains. 


Such a default prior is weakly informative and should have little influence on the posterior. And therefore, 


one can easily defend the choice of prior. Defending the choice of prior is probably the biggest challenge 


of adopting Bayesian methods in practice. 







For this data and this model, with the default prior settings, it will take just a couple of minutes to finish. 


The software is designed to be easy to use, so it takes care of other important steps that one may not 


need to know. But one may need to know the effects of what are in MCMC Controls and change them 


when it is necessary. But let’s first look at the Bayesian estimation result. 


Like what we have presented, the results include a copy of prior specification and summaries of posterior 


samples. 


 


Figure 31 Report of Bayesian Estimation in Repeated Measures Degradation 


The posterior sampling method in this platform is Metropolis-Hastings (MH) random walk algorithm. The 


rejection-based sampler is not attempted because it will be guaranteed to be inefficient due to the 


number of parameters. Here parameters include 42 unit parameters. When one uses MH algorithm, it is 


important to inspect posterior samples. There are two hyperlinks by the side of the posterior summaries 


of population parameters. For this tutorial, we will only click the first link. And the software will generate 


a table with posterior samples. 


The table has several embedded scripts. One should at least run the first script and produce time series 


plots for individual population parameters. One needs to confirm two things. First, time series should be 


stationary. Second, time series should have reasonably low auto correlation. 


 


Figure 32 Stationary Time Series 







By stationary, loosely speaking, one should expect time series look like a lot of random points around a 


horizontal line, free from any trends or patterns. Figure 32 is such an example. 


 


Figure 33 Autocorrelation Function Report in Time Series 


Meanwhile, we wish the series has as little autocorrelation as possible. Figure 33 is an example, which 


indicates that there is almost no autocorrelation in the series, which is the best situation we can expect. 


After seeing such results, we are comfortable to proceed and make an inference about the failure 


distribution for this type of alloy. The definition of failure for this type of alloy is that the crack length of a 


specimen reaches the threshold of 1.6 inches. And the distribution of million cycles before crack reaches 


1.6 inches is the failure distribution. To obtain that distribution, one should select “Show Life Distribution 


Profilers” from the report menu of the fitted model. And fill out the dialog accordingly. For this example, 


the most important item to enter is 1.6 to Upper Failure Definition. Then click OK button. 


 


Figure 34 Alloy A Failure Definition 


It will take a little time to compute, which will be based upon the posterior samples that we have obtained. 


In general, the time consumption is much shorter than that on drawing posterior samples. The results are 


two profilers. One for the failure distribution, and the other for quantile. 


 


Figure 35 Failure Distribution of Alloy A 







Device B 
This data set is slightly more complicated than Alloy-A, because there is an acceleration factor involved, 


which is temperature. Figure 36 is a plot of the data.  


 


Figure 36 Device B Data 


The data measures power output decrease from multiple power generators, at three temperature levels 


(150°C, 195°C, and 237°C). And the interest is to obtain the distribution of time in years for the power 


output reaches 0.5 decibels below the initial value, at the usual operating temperature at 80°C. This type 


of degradation data is known as the accelerated repeated measures degradation. 


We already know what model to fit, but the first step is to launch the platform properly. Here is the 


configuration of the launch dialog for this data. 


 


Figure 37 Repeated Measures Degradation Launch Dialog for Device B 







After clicking OK, one needs to identify the desired model among the list of models in Path Definition 


panel. The desired model is: 


 


By now, one should notice that the thumbnails corresponding to individual formulas in the Path 


Definition panel give hints whether a model is appropriate or not. Upon selecting the radio button, a 


dialog will appear and ask the user to determine the temperature unit. Choose Celsius for this example, 


then click OK. Another dialog will appear asking for a reference temperature. It suffices to accept the 


default for this example and click OK. After that step, click “Go to Bayesian Estimation” button to 


produce an outline node to fit this model. 


For this example, it suffices to accept all the default settings and click “Fit Model” button to start fitting 


the model. It takes a little longer than what is needed for the Alloy-A data. But it is worth waiting to look 


at the result to learn something important. As usual, the results have a copy of the prior settings, and 


summaries of posterior samples. Now click the first hyperlink under the Posterior Estimates outline and 


generate the posterior sample table. Run the first embedded script to see time series plots of population 


parameters. First, one should see all series are quite stationary. Then expand “Time Series Basic 


Diagnostics” to see autocorrelation functions. Most series show little to no autocorrelation, except for 


one: b3. 


 


Figure 38 Autocorrelation in Posterior Samples 







Here we see autocorrelation decay quickly and diminishes to zero at lag 9 or 10. This is reasonably good 


in the author’s experience. If it decays slowly, then it is an issue. The software has already taken care of 


this in a clever way, but it is impossible to eliminate all of them automatically without human intervention. 


Now is a good time to look at what is in the MCMC Controls. 


 


Figure 39 MCMC Controls for MH Algorithm in Repeated Measures Degradation 


The model fitting process has two stages. The first is hyperparameter tuning, and the second is drawing 


posterior sample using the settings tuned in the first stage. In our implementation, the tuning process is 


controlled by a single number: Warmup Laps. In general, the more laps, the better the tuning result will 


be. But it may not be necessary to run too many warmup laps. The tuning stage will determine multiple 


hyperparameters that are unnecessary to expose to users, except one: Thinning. Thinning is an integer 


which determines how many posterior samples need to be discarded to keep autocorrelation low in 


posterior samples. Suppose the value of Thinning is 5. That means the algorithm will only keep one sample 


among every five samples. The larger the Thinning value, the more samples will be discarded, and the 


sampling will be slower to collect desired number of posterior samples. But on the other hand, the smaller 


the Thinning value, the more likely that the posterior samples will be highly autocorrelated. During tuning, 


the software may increase the Thinning value, but won’t go beyond a thousand or so.  


After explaining what Warmup Laps and Thinning affect, we can now provide suggestions on when and 


how to use them. One will need to change them if they see slow decay in autocorrelation, e.g. the 


autocorrelation remains high after lag 20 or so. The first thing one should do is to increase the Warmup 


Laps integer. The values 20 and 30 are reasonable values. The author has not seen the necessity to use a 


value larger than 50. After increasing Warmup Laps, if the autocorrelation is still high, look at “Applied 


Thinning” in the saved MCMC Controls. The following is from fitting Device B data. The value is 658 in this 


run. 


 


Figure 40 Saved MCMC Controls 


Then uncheck “Auto Thinning” and enter an integer larger than Applied Thinning in the Thinning box, 


which is just below the Auto Thinning check box. You may want to add a larger number aggressively but 







expect to spend longer time to finish the fitting process. If it still does not appear improved, it might be a 


good time to contact our technical support or contact the author directly. 


For this example, the autocorrelation is not an issue in the author’s experience. We can proceed to make 


an inference about the failure time distribution estimation. Select “Show Life Distribution Profilers” from 


the report menu of the fitted model. And fill out the dialog accordingly. For this example, the most 


important items to enter include -0.5 to Lower Failure Definition, and 80 to Use Condition. Then click OK 


button. The generated Failure Distribution profiler gives an estimation of the failure probability at 130,000 


hours (15 years) together with the credible interval; see the plot on the left in Figure 41. 


  


Figure 41 Failure Distribution of Device B Using Weakly Informative Prior and Informative Prior 


You may notice the credible interval is wide. That is due to the amount of information that is available in 


the data, and the use of weakly informative prior. For this model, the parameter 𝑏3  is known as the 


activation energy. In practice, engineers have prior knowledge about the quantity. In this case, engineers 


may apply an informative prior on the activation energy using the following setting: 


 


Figure 42 Informative Prior on Activation Energy for Device B 


Correspondingly, the Failure Distribution on the right in Figure 41 gives the estimation and credible 


interval. That is a substantial change. It is a trustworthy result and more useful to engineers for 


subsequent system reliability design work. 


Conclusion 
JMP reliability products are comprehensive. What we have explored and demonstrated here is the tip of 


the iceberg. We hope that this tutorial leaves you an impression about the wide range of capabilities of 


JMP reliability products. 


The Bayesian methods that we have implemented are at the frontier of reliability data analysis research. 


There is still much to do in the future. We hope what we have put in JMP provide the engineers and 


scientists an easy access to solve some common problems that need Bayesian methods. 
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