

Adaptive T&E via Bayesian Decision Theory DATAWorks 2024

Jim Ferry, Nate Crookston, and Adam Ahmed

April 18, 2024

Sponsors:

Dr. Sandra Hobson, DOT&E, Deputy Director, SIPET Dr. Jeremy Werner, DOT&E, SIPET, Chief Scientist

COR: Mr. Chris Dodson, DOT&E JT&E

UNCLASSIFIED

learn more at <u>metsci.com</u>

How much is conducting a single trial of a system worth?

Executive Summary

- Bayesian Sequential Testing
 - Bayesian model maintains knowledge about system under test
 - Enables knowledge to be ported between test events
 - Predicts impact of even a single trial on knowledge about system
 - Leverages multiple evaluation criteria
 - Requirements: visualize progress toward meeting requirements
 - Optimal design: generate test design candidates
 - Moneyball: novel criterion for Bayesian models
- Moneyball evaluation criterion
 - Based on operational utility of system given current knowledge
 - Captures stakeholder priorities
 - Formulated in same units as testing cost: *enables principled cost/benefit analysis*
 - Recommends which trials are best, or whether it's time to stop testing

Dynamo T&E

- Dynamic Knowledge via Bayesian model of system
- Moneyball and other evaluation criteria

Dynamo T&E: Dynamic Knowledge + Moneyball

- Dynamic Knowledge
 - Bayesian model
 - Ports knowledge between test events
 - Real-time decisions

- Moneyball evaluation
 - All stakeholders' priorities put into common currency of operational utility
 - Subsumes Requirements and Optimal Design criteria
 - Includes cost of testing

UNCLASSIFIED

When testing is no longer worthwhile

AN/TPQ-53: Exemplar for Tabletop Demo

- Demo based on data from IOT&E 2 test event
 - Held at Yuma Proving Grounds, summer 2015
- Demo provides example of a decision-support tool for a dynamic test event
 - In contrast to a static test design, which cannot incorporate the results of test
- Exemplar system: AN/TPQ-53
 - Estimates Point Of Origin (POO) and Point Of Impact
 - POO provided to counterfire shooters
 - Detects projectiles in flight while scanning 90° or 360° search area
 - Can detect projectiles of varying aspect angles: incoming, crossing, etc. ←
 - Characterizes in-flight projectiles as Mortar, Artillery, or Rocket

Lockheed Martin AN/TPQ-53

Op Mode

- Munition

-• Aspect Angle

First Step: Define Inputs and Outputs

- Can collect input/output pairs (x,y) for data analysis
- Test design?
 - Which environments **x** to test?
- Test evaluation?
 - Which outcomes *y* indicate system is good or bad in environment x?

- Define inputs and outputs
 - Input: environment x
 - Conditions under which a trial is made
 - E.g., range to target, depth, system configuration
 - Output: outcomes *y*
 - Results of a single trial
 - E.g., hit/miss, miss distance, time to failure

<u>TPQ-53 case</u>

- Environment x = munitions type, operating mode (90° vs 360°), radar-to-battery range, etc.
- Outcome y = Point Of Origin error between actual and estimated location of battery

Evaluation Criterion: Meeting Requirements

 (U) Define which outcomes are considered good

- Typical structure for specifying requirements
 - Group environments x into sectors
 - Set thresholds on *y* for each sector
 - Specify what fraction of outcomes must meet each threshold
 - TPQ-53: 9 sectors with thresholds for each
- (U) Test design?
- (U) Prediction?
 - (U) What are outcomes for an environment that wasn't tested?

System Model Predicts System Performance

 Model: predicts outcomes y in any environment x

- Design system model with parameters θ : "tunable knobs"
- Estimate θ from test data
- Predicts outcomes *y* in untested environments **x**
- Compliance fraction in each sector (for a given θ)
 - Fraction of outcomes *y* within threshold over all **x** in sector

UNCLASSIFIED

Evaluation Criterion: Design of Experiments Metrics

- Theory of Optimal Design
 - Specifies which environments **x** to test
 - Goal: optimize some DoE metric for estimating parameters θ —
- Benefit: optimal test design independent of outcomes y
 - Provides good estimate of θ regardless of system being good or bad
- Drawback: ignores requirements

- Optimal Design: select test environments x to optimize information about parameters θ
 - "Alphabet soup" of Design of Experiments (DoE) metrics:
 - A-optimality
 - C-optimality
 - D-optimality
 - E-optimality
 - S-optimality
 - T-optimality
 - G-optimality
 - I-optimality
 - V-optimality

Interlude: What is the Goal of T&E?

- A RECTORING
- Is the goal of T&E:
 - To assess compliance?
 - Or to gain information?

- Information mindset: to gain information about system most efficiently
 - Optimizes test design for precision regardless of test outcomes
 - Sees value in tightening estimate in case A: information is gained

- Compliance mindset: to determine whether system meets requirements
 - Only concern is confidence about system meeting requirements
 - Sees no value in tightening estimate in case B: still 50% chance of compliance

J. Ferry *et al.*, "Use of Bayesian Methods to Optimize Decisions," *Naval Engineers Journal* **136**(1), 2024 (in press)

Bayesian Model

- Classical approach: estimate parameters θ
 - Done in batch after test event complete
- Bayesian approach: maintain knowledge κ about θ
 - Initialize κ with expert input and prior test event results
 - Update κ with each trial: outcomes y for environment \mathbf{x}

- Bayesian Model:
 Maintains knowledge κ about parameters θ from experts and test data
- Benefits of Bayesian approach
 - Can port knowledge between test events
 - Real-time decisions during test
 - Improved evaluation

Improved Evaluation with Bayesian Model

- Bayesian assessment of whether requirements met
 - Compliance fraction (per sector) defined for any parameters θ
 - Precise knowledge κ about θ depicted as large box
 - Imprecise knowledge κ about θ depicted as small box
- Bayesian Experimental Design: leverage expert knowledge

- Gives better assessment of
 - Whether requirements met
 - Optimal test design

Evaluation Criterion: Moneyball

- Moneyball evaluation
 - Direct assessment of κ
 - All stakeholders' priorities put into common currency
 - Subsumes Requirements and Optimal Design criteria
 - Includes cost of testing
- Moneyball: a new evaluation criterion for Bayesian models
 - Define the operational *utility* of a system when knowledge about it is κ
 - Utility can be based on requirements, but include softer thresholds
 - Utility can represent the value of information by modeling its impact on operational decisions
- Testing decisions: weigh benefit of knowledge gain vs. cost of test

M. Lewis, Moneyball: The Art of Winning an Unfair Game, W. W. Norton and Company, 2003

Dynamo T&E

When testing is no longer worthwhile

- Dynamo combines
 - A Bayesian model of knowledge that updates in real time
 - A Moneyball utility function that assesses decisions in terms of operational impact
- But how does it actually work?

Mathematical Structure

- Properties of Knowledge
- Governing equations for Utility
- Intrinsic utility: cares only about correct terminal decision
 - Impetus to test propagates out from terminal decision boundaries

Knowledge

- What does knowledge of a system mean?
 - There's knowledge in the TEMP, IDSK, test data, SMEs, etc.
 - Dynamo requires three properties of knowledge κ
- Property #1: κ provides distribution on y for any x
 - E.g.: sample θ given κ then sample y given θ and \mathbf{x}
 - Or: use explicit formula $P(y | \mathbf{x}, \kappa) = \int L(y | \mathbf{x}, \theta) P(\theta | \kappa) d\theta$
- Property #2: can update κ to κ^+ as data (\mathbf{x}, \mathbf{y}) arrive
 - E.g.: represent κ as an ensemble of θ 's and update using MCMC (Markov Chain Monte Carlo)
 - Or: represent κ as a hyperparameter in a conjugate prior family and update it directly
- Together, #1 and #2 provide $P(\kappa^+ | \kappa, X)$ for any matrix X of n environments to test

The knowledge κ characterizes how the system behaves in any environment x

Utility

- Property #3: a utility function $u_d(\kappa)$ over κ is defined for all terminal decisions $d \in D$
 - Terminal decisions $d \in D$: d = Reject system, d = Accept system, d = Improve system, etc.
 - Utility $u_d(\kappa)$: expected benefit of terminal decision d when knowledge is κ
 - E.g., if $d = \text{Accept into Full-Rate Production}, u_d(\kappa) = \text{value to military minus costs}$ (production, etc.)
- Elicitation challenging because method makes all assumptions explicit
- Governing equations define a Sequential Bayesian Decision Theory problem

 $u(\kappa) \doteq \max\left(u_D(\kappa), u_C(\kappa)\right) \qquad \text{Utility of } \kappa \text{ with options to stop or continue testing} \\ u_D(\kappa) \doteq \max_{d \in D} u_d(\kappa) \qquad \text{Terminal utility of } \kappa \text{: no further testing allowed (Property #3)} \\ u_C(\kappa) \doteq \max_{X \in C} u_X(\kappa) \qquad \text{Utility of best choice } X \text{ for environments to test next} \\ u_X(\kappa) \doteq \mathbb{E}_{\kappa^+ \mid \kappa, X} \left[u(\kappa^+) \right] - c_X \qquad \text{Expected utility of testing environments } X \text{ (Properties #1 and #2)} \\ \uparrow \text{testing cost for } X \end{aligned}$

Intrinsic Utility and Martingales

- Requirements, stakeholder preferences, etc. encoded in utility functions $u_d(\kappa)$
 - Important to understand the structure of $u_d(\kappa)$
- Every $u_d(\kappa)$ determines a $u_d(\theta)$ as a special case
 - I.e., when the knowledge κ = "precise value of θ known"
- Every $u_d(\theta)$ defines a certain type of $u_d(\kappa)$: an intrinsic utility $u_d^I(\kappa) \doteq \mathbb{E}_{\theta|\kappa} \left[u_d(\theta) \right]$
- Every $u_d(\kappa)$ can be decomposed into $u_d(\kappa) = u_d^I(\kappa) c_d(\kappa)$
 - $u_d^I(\kappa)$ is about making the best terminal decision, on average
 - The cost of imprecision $c_d(\kappa)$ is the penalty for imprecise knowledge
- Intrinsic utilities form martingales: $\mathbb{E}_{\kappa^+|\kappa,X} \left[u_d^I(\kappa^+) \right] = u_d^I(\kappa)$
 - For any given $d \in D$ the utility $u_d^I(\kappa)$ is the same, on average, as its future value... so why test?
 - Because $\mathbb{E}_{\kappa^+|\kappa,X}\left[u_D^I(\kappa^+)\right] \ge u_D^I(\kappa)$ (with $u_D^I(\kappa) \doteq \max_{d\in D} u_d^I(\kappa)$)

What does this say about a case with only one terminal decision?

100

80

60

40

20

Marginal Utility of the Option to Test

- For intrinsic utility, impetus to test generated at terminal decision boundaries (i.e., which $d \in D$ yields largest $u_d(\kappa)$) —
- To see this, re-write equations using $v(\kappa) \doteq u(\kappa) - u_D(\kappa) = \max(0, v_C(\kappa))$
- New governing equations:
 - $v_{C}(\kappa) \doteq \max_{X \in C} v_{X}(\kappa)$ $v_{X}(\kappa) \doteq \mathbb{E}_{\kappa^{+}|\kappa,X} \left[v(\kappa^{+}) \right] + g_{X}(\kappa) c_{X}$
- Source term at decision boundaries: $g_X(\kappa) \doteq \mathbb{E}_{\kappa^+ \mid \kappa, X} \left[u_D(\kappa^+) \right] - u_D(\kappa)$
- Impetus to test propagates out from decision boundaries

Example: Simple Hit/Miss System

- Beta-Bernoulli model for dynamic knowledge
- Utility model with three terminal decisions
- Source of marginal utility at terminal decision boundaries
 - Determines Continue Testing regions

Bayesian Model for Hit/Miss System

- Specialize equations to simple hit/miss case
 - No environment **x**
 - Outcome y = 1 (hit) or 0 (miss)
 - Parameter vector $\theta = p$ (hit probability)
 - Knowledge $\kappa = (a, b)$

J. Ferry "Experimental design for operational utility," The ITEA Journal of Test and Evaluation, **44**(3), 2023

Terminal Utilities for Hit/Miss System

0.5 $\Delta m = 1.44$ 0.2 $\dot{p}_0 = 4/9$ -0.5

1.0

 $u_d(p)$

• Terminal decisions: $D = \{R, I, A\}$ • Reject, Improve, or Accept • Continue Testing decisions: $C = \{T\}$ • Test Intrinsic utilities • $u_R(\mathbf{p}) = 0$ • $u_I(p) = 1.44 p - 0.64$

• Specialize equations to simple hit/miss case

- $u_A(p) = 1.44 p^2 0.44$
- Best to Reject for p < 4/9
- Best to Improve for 4/9
- Best to Accept for 5/6 < p•

Optimal Decisions as a Function of Cost of Single Trial

Shade Continue Region with Marginal Utility

A CONTRACTOR

26

Change Color Scheme to Focus on Marginal Utility

Solve for Marginal Utility v(a;n) Directly?

- Goal: calculate how impetus to test propagates out from decision boundaries enables direct computation of optimal decisions
- Exact asymptotic formula for zero-cost case: $\tilde{v}(a;n,p_0) \doteq \sqrt{\frac{p_0(1-p_0)}{4n}} F\left(\frac{a-np_0}{\sqrt{np_0(1-p_0)}}\right)$ with $F(z) \doteq \frac{|z|}{2\sqrt{\pi}} \Gamma\left(-\frac{1}{2},\frac{z^2}{2}\right)$

Application of Dynamo to AN/TPQ-53 System

• Governing equations for Bayesian linear regression model

Normal–Normal-Inverse-Gamma (NNIG) Model

- Parameter $\theta = (\mathbf{c}, \sigma^2)$ governs distribution of y for each value of x
 - Scalar version: $L(\mathbf{y} | \mathbf{x}, \theta) = \mathcal{N}(\mathbf{y}; \mathbf{c} \cdot \mathbf{x}, \sigma^2) \doteq \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\mathbf{y} \mathbf{c} \cdot \mathbf{x})^2}{2\sigma^2}\right]$

• Vector version:
$$L(\vec{y} | X, \theta) = \mathcal{N}(\vec{y}; X\mathbf{c}^T, \sigma^2 I) \doteq \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{\left(\vec{y} - X\mathbf{c}^T\right)^T \left(\vec{y} - X\mathbf{c}^T\right)}{2\sigma^2}\right)$$

- Knowledge $\kappa = (\mu, V, \alpha, \beta)$ governs distribution of θ
 - $P(\theta \mid \kappa) = P(\mathbf{c} \mid \boldsymbol{\mu}, \boldsymbol{V}, \sigma^2) P(\sigma^2 \mid \boldsymbol{\alpha}, \boldsymbol{\beta})$

$$P(\mathbf{c} | \boldsymbol{\mu}, \boldsymbol{V}, \sigma^{2}) = \mathcal{N}(\mathbf{c}; \boldsymbol{\mu}, \sigma^{2} \boldsymbol{V}) \doteq \frac{1}{\sqrt{(2\pi\sigma^{2})^{d} | \boldsymbol{V} |}} \exp\left(-\frac{(\mathbf{c} - \boldsymbol{\mu})\boldsymbol{V}^{-1}(\mathbf{c} - \boldsymbol{\mu})^{T}}{2\sigma^{2}}\right)$$
$$P(\sigma^{2} | \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mathcal{I}\mathcal{G}\left(\sigma^{2}; \frac{\boldsymbol{\alpha}}{2}, \frac{\boldsymbol{\beta}}{2}\right) = \frac{(\boldsymbol{\beta}/2)^{\boldsymbol{\alpha}/2}}{\Gamma(\boldsymbol{\alpha}/2)} (\sigma^{2})^{-(\boldsymbol{\alpha}/2+1)} e^{-\boldsymbol{\beta}/(2\sigma^{2})}$$

Bayesian Inversion to Assimilate Test Data

• Posterior predictive distribution = multivariate *t*

$$P(\vec{y} \mid X, \kappa) = \int L(\vec{y} \mid X, \theta) P(\theta \mid \kappa) d\theta = \mathcal{T}_{\alpha} \left(\vec{y}; X \boldsymbol{\mu}^{T}, \frac{\beta}{\alpha} (I + X V X^{T}) \right)$$

$$predict outcomes y given knowledge \kappa$$

$$= \frac{\Gamma((\alpha + n)/2)}{\Gamma(\alpha/2) \sqrt{(\beta \pi)^{n} \mid I + X V X^{T} \mid}} \left(1 + \frac{1}{\beta} (\vec{y} - X \boldsymbol{\mu}^{T})^{T} (I + X V X^{T})^{-1} (\vec{y} - X \boldsymbol{\mu}^{T}) \right)^{-(\alpha + n)/2}$$

Bayesian inversion

•
$$P(\theta \mid \vec{y}, X, \kappa_0) = \frac{L(\vec{y} \mid X, \theta) P(\theta \mid \kappa_0)}{P(\vec{y} \mid X, \kappa_0)} = \frac{\mathcal{N}(\vec{y}; X \mathbf{c}^T, \sigma^2 I) \mathcal{N}(\mathbf{c}; \boldsymbol{\mu}_0, \sigma^2 V_0) \mathcal{I} \mathcal{G}(\sigma^2; \alpha_0 \mid 2, \beta_0 \mid 2)}{\mathcal{T}_{\alpha_0} \left(\vec{y}; X \boldsymbol{\mu}_0^T, \frac{\beta_0}{\alpha_0} \left(I + X V_0 X^T \right) \right)}$$

• Conjugate prior structure: simple updates

•
$$P(\theta \mid \vec{y}, X, \kappa_0) = P(\theta \mid \kappa_n) = P(\mathbf{c} \mid \boldsymbol{\mu}_n, V_n, \sigma^2) P(\sigma^2 \mid \alpha_n, \beta_n)$$

Property #1:

Conjugate Prior Structure of NNIG: Simple Updating

- Update rule for κ
 - $\boldsymbol{\mu}_{n} = \left(\boldsymbol{\mu}_{0}V_{0}^{-1} + \vec{y}^{T}X\right)V_{n}$ $V_{n} = \left(V_{0}^{-1} + X^{T}X\right)^{-1}$ $\alpha_{n} = \alpha_{0} + n$ $\beta_{n} = \beta_{0} + \left(\vec{y} - X\boldsymbol{\mu}_{0}^{T}\right)^{T}\left(I + XV_{0}X^{T}\right)^{-1}\left(\vec{y} - X\boldsymbol{\mu}_{0}^{T}\right)$
- Simplified update: let $W \doteq V^{-1}$, $\mathbf{v} \doteq \boldsymbol{\mu} W$, and $\gamma \doteq \beta + \boldsymbol{\mu} \cdot \mathbf{v}$
 - $\mathbf{v}_n = \mathbf{v}_0 + \vec{y}^T X$ $W_n = W_0 + X^T X$ $\alpha_n = \alpha_0 + n$ $\gamma_n = \gamma_0 + \vec{y}^T \vec{y}$

 $\mu, \mathbf{v}, \mathbf{c}, \mathbf{x} : 1 \times d$ $\vec{y} : n \times 1$ $V, W : d \times d$ $X : n \times d$

Example of Knowledge Updating

- Bayesian model maintains the knowledge $\kappa = (\mu, V, \alpha, \beta)$ about system
 - Beginning with Subject Matter Expert (SME) knowledge initially
 - Though this example uses a diffuse prior (no initial knowledge)
 - Knowledge updated with each test
 - Each test is a pair (x,y): an environment x and an outcome y
- Sequential Bayesian Testing: can use κ to assess system at any time
- Four-slide example for proxy data
 - Knowledge κ : determines distribution over parameter θ
 - Any value of the parameter θ predicts outcomes y in any environment x
 - Outcome *y* = log(error) between actual and estimated location of an object
 - Environment x = various discrete and continuum factors that influence outcome
 - Knowledge κ updated after every test result (x,y)

Sequential Bayesian Updates with TPQ-53 Proxy Data

Sequential Bayesian Updates with TPQ-53 Proxy Data

Sequential Bayesian Updates with TPQ-53 Proxy Data

Preview of Forthcoming Dynamo GUI

• Unclassified Mock-Cannon example

Mock-Cannon Example

	د م بث ال ع :
DYNAMO	
Select System Under Test Mock-Cannon IMPORT IDSK	Select Example Decision Aid

Mock-Cannon Example

Mock-Cannon Example

Mock-Cannon Example

Mock-Cannon Example

Executive Summary

- Bayesian Sequential Testing
 - Bayesian model maintains knowledge about system under test
 - Enables knowledge to be ported between test events
 - Predicts impact of even a single trial on knowledge about system
 - Leverages multiple evaluation criteria
 - Requirements: visualize progress toward meeting requirements
 - Optimal design: generate test design candidates
 - Moneyball: novel criterion for Bayesian models
- Moneyball evaluation criterion
 - Based on operational utility of system given current knowledge
 - Captures stakeholder priorities
 - Formulated in same units as testing cost: *enables principled cost/benefit analysis*
 - Recommends which trials are best, or whether it's time to stop testing

