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How much is conducting a single trial of a system worth?
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Executive Summary

• Bayesian Sequential Testing

• Bayesian model maintains knowledge about system under test

• Enables knowledge to be ported between test events

• Predicts impact of even a single trial on knowledge about system

• Leverages multiple evaluation criteria

• Requirements:  visualize progress toward meeting requirements

• Optimal design:  generate test design candidates

• Moneyball:  novel criterion for Bayesian models

• Moneyball evaluation criterion

• Based on operational utility of system given current knowledge

• Captures stakeholder priorities

• Formulated in same units as testing cost: enables principled cost/benefit analysis

• Recommends which trials are best, or whether it’s time to stop testing
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Dynamo T&E
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• Dynamic Knowledge via Bayesian model of system
• Moneyball and other evaluation criteria

UNCLASSIFIED
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Dynamo T&E:  Dynamic Knowledge + Moneyball
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• Visualize
state of test

• Generate
candidate test designs

• Real-time T&E decision aid

• Recommends
• Which environments x to test

• When testing is no longer worthwhile

Application in Dynamo T&E

• Dynamic Knowledge

• Bayesian model

• Ports knowledge 
between test events

• Real-time decisions

x y

q

k

Evaluation CriterionTesting Model

Environment

Parameters

Knowledge

Outcomes
Requirements

Optimal
Design

MoneyballBayesian Model

Input/Output

Model

• Moneyball evaluation

• All stakeholders’ priorities
put into common currency of operational utility

• Subsumes Requirements and Optimal Design criteria

• Includes cost of testing
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AN/TPQ-53 :  Exemplar for Tabletop Demo

• Exemplar system: AN/TPQ-53

• Estimates Point Of Origin (POO) and Point Of Impact

• POO provided to counterfire shooters

• Detects projectiles in flight while scanning 90˚ or 360˚ search area

• Can detect projectiles of varying aspect angles:  incoming, crossing, etc.

• Characterizes in-flight projectiles as Mortar, Artillery, or Rocket

UNCLASSIFIED
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POO

POI

Lockheed Martin AN/TPQ-53

Environment

• Range

• Op Mode

• Aspect Angle

• Munition

• Demo based on data from IOT&E 2 test event

• Held at Yuma Proving Grounds, summer 2015

• Demo provides example of a decision-support tool 
for a dynamic test event

• In contrast to a static test design, which cannot 
incorporate the results of test
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First Step:  Define Inputs and Outputs
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• Can collect input/output
pairs (x,y) for data analysis

• Test design?

• Which environments x to test?

• Test evaluation?

• Which outcomes y indicate system
is good or bad in environment x?

TPQ-53 case

• Environment x = munitions type, operating mode 
(90° vs 360°), radar-to-battery range, etc.

• Outcome y = Point Of Origin error between actual 
and estimated location of battery

• Define inputs and outputs

• Input:  environment x
• Conditions under which a trial is made

• E.g., range to target, depth, system configuration

• Output:  outcomes y
• Results of a single trial

• E.g., hit/miss, miss distance, time to failure

Input/Outputx y
Environment

Outcomes

Testing Model
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Evaluation Criterion:  Meeting Requirements
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• (U) Define which 
outcomes are 
considered good

• Typical structure for specifying requirements

• Group environments x into sectors

• Set thresholds on y for each sector

• Specify what fraction of outcomes must meet each threshold

• TPQ-53:  9 sectors with thresholds for each

• (U) Test design?

• (U) Prediction?

• (U) What are outcomes for an environment that wasn’t tested?

Threshold on POO error y

Requirementsx y
Environment

Outcomes

Evaluation CriterionTesting Model

Input/Output
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System Model Predicts System Performance
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• Model:  predicts
outcomes y in
any environment x

0.79 0.54 0.61

0.80 0.56 0.65

0.81 0.81 0.86

Compliance Fraction

• Model specifies how likely outcomes y are for any x
• Design system model with parameters q:  “tunable knobs” 

• Estimate q from test data

• Predicts outcomes y in untested environments x

• Compliance fraction in each sector (for a given q)

• Fraction of outcomes y within threshold over all x in sector

Requirementsx y

q

Environment

Outcomes

Evaluation Criterion

Parameters

Testing Model

Input/Output

Model
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Evaluation Criterion:  Design of Experiments Metrics
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• Optimal Design:  select 
test environments x to 
optimize information 
about parameters q

• Theory of Optimal Design

• Specifies which environments x to test

• Goal:  optimize some DoE metric for estimating parameters q

• Benefit:  optimal test design independent of outcomes y
• Provides good estimate of q regardless of system being good or bad

• Drawback:  ignores requirements

• “Alphabet soup” of 
Design of Experiments 
(DoE) metrics:

• A-optimality
• C-optimality
• D-optimality
• E-optimality
• S-optimality
• T-optimality
• G-optimality
• I-optimality
• V-optimality

Requirements

Optimal
Design

x y

q

Environment

Outcomes

Evaluation Criterion

Parameters

Testing Model

Input/Output

Model
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Interlude:  What is the Goal of T&E?
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J. Ferry et al., “Use of Bayesian Methods to Optimize 
Decisions,” Naval Engineers Journal 136(1), 2024 (in press)

• Is the goal of T&E:

• To assess
compliance?

• Or to gain
information?

• Compliance mindset:  to determine whether 
system meets requirements

• Only concern is confidence about system meeting 
requirements

• Sees no value in tightening estimate in case B: 
still 50% chance of compliance

compliance threshold

A B

q = hit-rate parameter

old range new range after test

0 0.5 1

• Information mindset:  to gain information about 
system most efficiently

• Optimizes test design for precision regardless of 
test outcomes

• Sees value in tightening estimate in case A:  
information is gained

Requirements

Optimal
Design

x y

q

Compliance mindset

Information
mindset

Environment

Outcomes

Evaluation Criterion

Parameters

Testing Model

Input/Output

Model
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Bayesian Model
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• Bayesian Model:
Maintains knowledge k
about parameters q from 
experts and test data

• Classical approach:  estimate parameters q
• Done in batch after test event complete

• Bayesian approach:  maintain knowledge k about q
• Initialize k with expert input and prior test event results

• Update k with each trial:  outcomes y for environment x

• Benefits of Bayesian 
approach

• Can port knowledge 
between test events

• Real-time decisions 
during test

• Improved evaluation

Requirements

Optimal
Design

x y

q

k

Environment

Outcomes

Evaluation Criterion

Parameters

Knowledge

Testing Model

Input/Output

Model

Bayesian Model
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Improved Evaluation with Bayesian Model
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Hinton Diagram

• Gives better assessment of

• Whether requirements met

• Optimal test design

• Bayesian assessment of whether requirements met

• Compliance fraction (per sector) defined for any parameters q 
• Precise knowledge k about q depicted as large box

• Imprecise knowledge k about q depicted as small box

• Bayesian Experimental Design:  leverage expert knowledge

Requirements

Optimal
Design

x y

q

k

Environment

Outcomes

Evaluation Criterion

Parameters

Knowledge

Testing Model

Input/Output

Model

Bayesian Model
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Evaluation Criterion:  Moneyball
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• Moneyball evaluation
• Direct assessment of k

• All stakeholders’ priorities
put into common currency

• Subsumes Requirements
and Optimal Design criteria

• Includes cost of testing

• Moneyball:  a new evaluation criterion for Bayesian models

• Define the operational utility of a system when knowledge about it is k

• Utility can be based on requirements, but include softer thresholds

• Utility can represent the value of information by modeling its impact on operational decisions

• Testing decisions:  weigh benefit of knowledge gain vs. cost of test

Requirements

Optimal
Design

Moneyball

x y

q

k

Environment

Outcomes

Evaluation Criterion

Parameters

Knowledge

Testing Model

Input/Output

Model

Bayesian Model

M. Lewis, Moneyball: The Art of 
Winning an Unfair Game, W. W. 
Norton and Company, 2003
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Dynamo T&E
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• Visualize
state of test

• Generate
candidate test designs

• Dynamo combines

• A Bayesian model of knowledge that updates in real time

• A Moneyball utility function that assesses decisions in terms of operational impact

• But how does it actually work?

x y

q

k

Evaluation CriterionTesting Model

Environment

Parameters

Knowledge

Outcomes
Requirements

Optimal
Design

MoneyballBayesian Model

Input/Output

Model

Application in Dynamo T&E

• Real-time T&E decision aid

• Recommends
• Which environments x to test

• When testing is no longer worthwhile
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Mathematical Structure
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• Properties of Knowledge
• Governing equations for Utility
• Intrinsic utility:  cares only about correct terminal decision

• Impetus to test propagates out from terminal decision boundaries

UNCLASSIFIED
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Knowledge

• What does knowledge of a system mean?

• There’s knowledge in the TEMP, IDSK, test data, SMEs, etc.

• Dynamo requires three properties of knowledge k

• Property #1:  k provides distribution on y for any x
• E.g.:   sample q given k then   sample y given q and x

• Or:  use explicit formula 

• Property #2:  can update k to k+ as data (x,y) arrive

• E.g.: represent k as an ensemble of q’s and update using MCMC (Markov Chain Monte Carlo)

• Or: represent k as a hyperparameter in a conjugate prior family and update it directly

• Together, #1 and #2 provide                           for any matrix X of n environments to test

UNCLASSIFIED
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( | , ) ( | , ) ( | )P dy yL Pk q q qk= òx x
The knowledge k characterizes how the 
system behaves in any environment x

( | , )P Xk k+

y
n

Environment x

Outcome y
n = number of

(x, y) pairs

( | , )L y qx

( | )P q k

Parameter
vector q

Knowledge k

xq

k

X = matrix of n x’s
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Utility

• Property #3:  a utility function ud(k) over k is defined for all terminal decisions
• Terminal decisions              :  d = Reject system, d = Accept system, d = Improve system, etc.

• Utility ud(k):  expected benefit of terminal decision d when knowledge is k
• E.g., if d = Accept into Full-Rate Production, ud(k) = value to military minus costs (production, etc.)

• Elicitation challenging because method makes all assumptions explicit 

• Governing equations define a Sequential Bayesian Decision Theory problem
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d DÎ

Terminal utility of k :  no further testing allowed (Property #3)

Utility of best choice X for environments to test next

Expected utility of testing environments X (Properties #1 and #2)

testing cost for X
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Intrinsic Utility and Martingales

• Requirements, stakeholder preferences, etc. encoded in utility functions ud(k)
• Important to understand the structure of ud(k)

• Every ud(k) determines a ud(q) as a special case

• I.e., when the knowledge k = “precise value of q known”

• Every ud(q) defines a certain type of ud(k):  an intrinsic utility

• Every ud(k) can be decomposed into

• is about making the best terminal decision, on average

• The cost of imprecision cd(k) is the penalty for imprecise knowledge

• Intrinsic utilities form martingales:

• For any given                the utility              is the same, on average, as its future value… so why test?

• Because                                                     (with                                         )
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Alethophobia:  when cd (k) < 0
a perverse “fear of truth” can 
arise, where a tester would 
rather not know test results, 
even if they were free!

d DÎ ( )I
du k

What does this say about a case 
with only one terminal decision?



20

Marginal Utility of the Option to Test

• For intrinsic utility, impetus to test generated at terminal 
decision boundaries (i.e., which               yields largest ud(k))

• To see this, re-write equations using

• New governing equations:

• Source term at decision boundaries:

• Impetus to test propagates out from decision boundaries
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Example:  Simple Hit/Miss System
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• Beta–Bernoulli model for dynamic knowledge
• Utility model with three terminal decisions
• Source of marginal utility at terminal decision boundaries

• Determines Continue Testing regions

UNCLASSIFIED
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Updated 
knowledge
k = (30,5.5) 20 H, 3M

P(p|30,5.5)

hit rate p

Bayesian Model for Hit/Miss System

• Specialize equations to simple hit/miss case

• No environment x
• Outcome y = 1 (hit) or 0 (miss)

• Parameter vector q = p (hit probability)

• Knowledge k = (a,b)

UNCLASSIFIED
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1
( | )
( |
1
0 )

p p
p p

L
L

=
= -
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( )

,
,
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a

p
b

- --
=

B

hit rate p

P(p|10,2.5)

0 H, 0M

+ Data

Initial
knowledge
k = (10,2.5)

(via previous
test event)

a,b

y
n

p

Outcome y

n = number of y

( | )L y p

( ),|P p a b

Parameter p

Knowledge a,bBeta distribution on p

Bernoulli distribution on y

111110111111
11110110111

J. Ferry “Experimental design for operational utility,” 
The ITEA Journal of Test and Evaluation, 44(3), 2023
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Terminal Utilities for Hit/Miss System

• Specialize equations to simple hit/miss case

• Terminal decisions:  D = {R, I, A}
• Reject, Improve, or Accept

• Continue Testing decisions:  C = {T}
• Test

• Intrinsic utilities

• uR(p) = 0

• uI(p) = 1.44 p − 0.64

• uA(p) =1.44 p2 − 0.44

• Best to Reject for p < 4/9
• Best to Improve for 4/9 < p < 5/6
• Best to Accept for 5/6 < p

UNCLASSIFIED

UNCLASSIFIED

1.44mD =

0 4 9p =

0 5 6p =

0.96mD =

( )Au p

( )du p

p
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Optimal Decisions as a Function of Cost of Single Trial
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610Tc -=

310Tc -=

410Tc -= 510Tc -=

210Tc -=Tc =¥

Decisions

a

b

a b n+ =

Exact solution requires 
iterating to where gray 
regions close off and 
iterating backward:  
expensive 
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Shade Continue Region with Marginal Utility 
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610Tc -=

310Tc -=

410Tc -= 510Tc -=

210Tc -=Tc =¥

Decisions
and v(a;n)

a

b

a b n+ =



26

Change Color Scheme to Focus on Marginal Utility
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v(a;n) and
decisions

610Tc -=

310Tc -=

410Tc -= 510Tc -=

210Tc -=Tc =¥

a

b

a b n+ =
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Solve for Marginal Utility v(a;n)Directly?

• Goal:  calculate how impetus to test propagates out from
decision boundaries – enables direct computation of optimal decisions

• Exact asymptotic formula for zero-cost case:
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Application of Dynamo to AN/TPQ-53 System
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• Governing equations for Bayesian linear regression model

UNCLASSIFIED
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Normal–Normal-Inverse-Gamma (NNIG) Model
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• Parameter                         governs distribution of y for each value of x

• Scalar version:

• Vector version:

• Knowledge                                  governs distribution of q

•
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Bayesian Inversion to Assimilate Test Data
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• Posterior predictive distribution = multivariate t

•

• Bayesian inversion

•

• Conjugate prior structure:  simple updates

•
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Conjugate Prior Structure of NNIG:  Simple Updating
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• Update rule for k

•

• Simplified update:  let 

•
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Example of Knowledge Updating

UNCLASSIFIED

UNCLASSIFIED

• Bayesian model maintains the knowledge                                 about system

• Beginning with Subject Matter Expert (SME) knowledge initially

• Though this example uses a diffuse prior (no initial knowledge)

• Knowledge updated with each test

• Each test is a pair (x,y):  an environment x and an outcome y

• Sequential Bayesian Testing:  can use k to assess system at any time

• Four-slide example for proxy data

• Knowledge k:  determines distribution over parameter q

• Any value of the parameter q predicts outcomes y in any environment x
• Outcome y = log(error) between actual and estimated location of an object

• Environment x = various discrete and continuum factors that influence outcome

• Knowledge k updated after every test result (x,y)

( , , , )Vk a b= μ
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Sequential Bayesian Updates with TPQ-53 Proxy Data
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• Knowledge k after 10 tests

• Determines probabilities for parameters q

• Two examples of parameters q
• Determines probabilities for outcomes y in 

any environment x

• Four examples of y for each q

Knowledge k

Example parameters q

Example errors y (in meters)

Environment x

a

V

s
c

2
b

s
a-

 s m
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Sequential Bayesian Updates with TPQ-53 Proxy Data
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• Knowledge k after 50 tests

• I.e., updated using 50 pairs (x, y)

• Predicted outcomes y still way off

• Due to initial k set to “no knowledge”

• In practice, SME knowledge provides 
initial k that yields reasonable y values

Knowledge k

Example parameters q

Example errors y (in meters)

Environment x
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Sequential Bayesian Updates with TPQ-53 Proxy Data
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• Knowledge k after 150 tests

• For environment x
• Now produces reasonable y values

• Still some high uncertainty in k
• First 150 tests did not include 

diverse range of environments

Knowledge k

Example parameters q

Example errors y (in meters)

Environment xRocket 90°SR
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Sequential Bayesian Updates with TPQ-53 Proxy Data
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• Knowledge k after all tests

• Example parameters q
• Clustered around mean

• With low uncertainty

• Were all tests needed?

Knowledge k

Example parameters q

Example errors y (in meters)

Environment x
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Preview of Forthcoming Dynamo GUI
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• Unclassified Mock-Cannon example
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Mock-Cannon Example
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Mock-Cannon Example
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Mock-Cannon Example
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Mock-Cannon Example
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Mock-Cannon Example
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Executive Summary

• Bayesian Sequential Testing

• Bayesian model maintains knowledge about system under test

• Enables knowledge to be ported between test events

• Predicts impact of even a single trial on knowledge about system

• Leverages multiple evaluation criteria

• Requirements:  visualize progress toward meeting requirements

• Optimal design:  generate test design candidates

• Moneyball:  novel criterion for Bayesian models

• Moneyball evaluation criterion

• Based on operational utility of system given current knowledge

• Captures stakeholder priorities

• Formulated in same units as testing cost: enables principled cost/benefit analysis

• Recommends which trials are best, or whether it’s time to stop testing
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