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• Bayesian Basics

• Computation

• Applications to Integrated T&E

Outline
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• Treat unknowns as statistical quantities

• Incorporate all information, including what is known before 
running an experiment, into the modeling via rigorous 
assumptions

• Update those beliefs once data is collected

The Big Idea
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BAYESIAN BASICS



Not Cleared for Public Release 5

Relates the probability of a parameter value 𝜃𝜃 given data 𝑌𝑌
(𝑃𝑃(𝜃𝜃|𝑌𝑌)) to the probability of 𝑌𝑌 given 𝜃𝜃 and the probability 
of 𝜃𝜃:

Note that this is a simple consequence of

Bayes’ Theorem

𝑃𝑃(𝜃𝜃|𝑌𝑌) =
𝑃𝑃 𝑌𝑌 𝜃𝜃 𝑃𝑃(𝜃𝜃)

𝑃𝑃(𝑌𝑌)

𝑃𝑃 𝜃𝜃 ∩ 𝑌𝑌 = 𝑃𝑃 𝜃𝜃 𝑌𝑌 𝑃𝑃 𝑌𝑌
𝑃𝑃 𝜃𝜃 ∩ 𝑌𝑌 = 𝑃𝑃 𝑌𝑌 𝜃𝜃 𝑃𝑃(𝜃𝜃)
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Usually 𝑃𝑃(𝑌𝑌) is hard to calculate (requires considering all 
values of 𝜃𝜃) and we really care about relative probability in 
𝜃𝜃, so we write simply:

Bayes’ Theorem (continued)

𝑃𝑃 𝜃𝜃 𝑌𝑌 ∝ 𝑃𝑃 𝑌𝑌 𝜃𝜃 𝑃𝑃(𝜃𝜃)
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Usually 𝑃𝑃(𝑌𝑌) is hard to calculate (requires considering all 
values of 𝜃𝜃) and we really care about relative probability in 
𝜃𝜃, so we write simply:

Bayes’ Theorem (continued)

𝑃𝑃 𝜃𝜃 𝑌𝑌 ∝ 𝑃𝑃 𝑌𝑌 𝜃𝜃 𝑃𝑃(𝜃𝜃)
Prior
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Usually 𝑃𝑃(𝑌𝑌) is hard to calculate (requires considering all 
values of 𝜃𝜃) and we really care about relative probability in 
𝜃𝜃, so we write simply:

Bayes’ Theorem (continued)

𝑃𝑃 𝜃𝜃 𝑌𝑌 ∝ 𝑃𝑃 𝑌𝑌 𝜃𝜃 𝑃𝑃(𝜃𝜃)
Likelihood Prior
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Usually 𝑃𝑃(𝑌𝑌) is hard to calculate (requires considering all 
values of 𝜃𝜃) and we really care about relative probability in 
𝜃𝜃, so we write simply:

Bayes’ Theorem (continued)

𝑃𝑃 𝜃𝜃 𝑌𝑌 ∝ 𝑃𝑃 𝑌𝑌 𝜃𝜃 𝑃𝑃(𝜃𝜃)
Posterior Likelihood Prior
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• Probability distribution describing information known about 
parameters prior to gathering data

• Might be derived from:
– Previous data, e.g.,

o Previous phases of test
o Digital representations of systems
o Similar systems

– Theory (e.g., physics-based models)

– Subject matter expertise

Bayesian Ingredients: Prior
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• Describes the probability of a specific test result given a set 
of model parameter values
– Higher when parameter 𝜃𝜃 “matches” data 𝑌𝑌 and lower when it doesn’t

• Sometimes thought of as comprising a forward model 
mapping the parameter space to the data space and some 
observational noise in measuring the data, e.g.,

yields

Bayesian Ingredients: Likelihood

𝑌𝑌 = 𝐺𝐺 𝜃𝜃 + 𝜖𝜖, 𝜖𝜖 ∼ 𝑁𝑁(0,𝜎𝜎2)

𝑃𝑃 𝑌𝑌 𝜃𝜃 ∝
1
2𝜋𝜋𝜎𝜎2

exp[−
1

2𝜎𝜎2
𝑌𝑌 − 𝐺𝐺 𝜃𝜃 2]
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• Updated understanding of parameter after data are 
incorporated

• Describes what we can and cannot discern about model 
parameters from the combination of prior knowledge and new 
test results 
– Higher where parameter matches both data and prior understanding
– Lower where parameter has significant mismatch with one or the other

• The posterior is the “answer” in the Bayesian setting

Bayesian Ingredients: Posterior

𝑃𝑃 𝜃𝜃 𝑌𝑌 ∝ 𝑃𝑃 𝑌𝑌 𝜃𝜃 𝑃𝑃(𝜃𝜃)
Posterior Likelihood Prior
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• What is the effect of the prior? Will it bias the results?
– Yes – amount depends on how strong the prior is and how much/certain the 

data is

– Large data limit: Priors are typically overwhelmed except in rare cases

• Assumptions are clearly documented

• Analysis of sensitivity to priors is common

• Frequentist Approach: Bayesian with a diffuse (e.g., uniform) 
prior
– Is this really all that we know?

A Note about Priors
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Modeling Human Understanding

This Photo by Unknown Author is licensed under CC BY-SA-NC

Bayesian inference models how humans learn and understand
1. We start with an understanding of the world (prior)
2. We have an experience (data and likelihood)
3. We update our understanding (posterior)

• If our understanding is vague, data can shift it significantly
• If our understanding is strong, data has limited effect

http://trainings.350.org/resource/the-experiential-learning-cycle/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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• Bayesian methods can be used to design tests
– Given knowledge of system (estimates and uncertainty), where should we test next to 

learn as much as possible?

• Maximize expected utility: 𝑈𝑈(𝑑𝑑) =
∫𝑅𝑅×Θ𝑢𝑢(𝑑𝑑,𝑦𝑦,𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃,𝑑𝑑)𝑝𝑝(𝜃𝜃)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
– e.g., Bayesian D-optimality, Mutual information (Kullback-Liebler divergence)

• Similar to conventional DOE when:
– Priors are weak
– Data is limited

• Can be extremely computationally intensive
– Mostly limited to low-dimensional designs (e.g., 4 parameters)

Briefly: Bayesian Design of Experiments
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COMPUTING THE POSTERIOR



Not Cleared for Public Release 17

• We have the equation – can we just write it down?
– Typically not in any nice, usable form, as probability of a given 𝜃𝜃 requires 

knowing the normalization 𝑃𝑃(𝑌𝑌), which we can’t compute

• Exception: Conjugate priors
– Yield posterior distribution in same family as prior distribution

• Example:
– Estimate the probability of success 𝜃𝜃 of a Bernoulli trial

– Prior: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼,𝛽𝛽) for some choice of 𝛼𝛼 and 𝛽𝛽
– Likelihood: Binomial distribution

– Observing 𝑠𝑠 successes and 𝑓𝑓 failures, yields the posterior: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼 + 𝑠𝑠,𝛽𝛽 + 𝑓𝑓)

How do we get the posterior?
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Beta-Binomial Conjugate Prior Example
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• Idea: 
– Find a Markov Chain with the target distribution as the invariant (steady-state) 

distribution

– Under certain conditions, if we draw enough samples from the chain, we get 
samples from the (approximate) target distribution

– Use samples to compute quantities of interest, e.g., mean, standard deviation, 
quantiles, credible intervals, etc

• Does not require knowing the normalization constant

Markov Chain Monte Carlo (MCMC)
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To sample from a target density 𝜋𝜋(𝜃𝜃):

• Start with a sample 𝜃𝜃0
• Sample from a normal �𝜃𝜃 ∼ 𝑁𝑁(𝜃𝜃0,𝜎𝜎2)
• Evaluate 𝜋𝜋(𝜃𝜃0) and 𝜋𝜋( �𝜃𝜃)
• Rule: Always go uphill, sometimes go downhill

– If 𝜋𝜋 �𝜃𝜃 ≥ 𝜋𝜋(𝜃𝜃0), “accept” 𝜃𝜃1 = �𝜃𝜃
– If 𝜋𝜋 �𝜃𝜃 < 𝜋𝜋(𝜃𝜃0)

o “Accept” 𝜃𝜃1 = �𝜃𝜃 with probability 𝜋𝜋 �𝜃𝜃 /𝜋𝜋(𝜃𝜃0)
o Otherwise “reject” and stay in the same place: 𝜃𝜃1 = 𝜃𝜃0

• Repeat starting from 𝜃𝜃1

The Original MCMC: Random Walk



Not Cleared for Public Release 21

• Many methods, e.g.: 
– Gibbs samplers

– Metropolis-Hastings samplers

• Implementation can be complicated depending on the 
method

• Nice visualizations of various methods can be found here:
https://chi-feng.github.io/mcmc-demo/

• Fortunately, some standard implementations exist, e.g.,
– JAGS (“Just Another Gibbs Sampler”), available via R package rjags

– Stan, available via R package rstan

MCMC: Continued

https://chi-feng.github.io/mcmc-demo/
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• Frequentist statistics: Confidence interval is an interval [𝑎𝑎, 𝑏𝑏]
associated with results of an experiments such that the true 
value of the parameter 𝜃𝜃 will be in [𝑎𝑎, 𝑏𝑏] in 𝛾𝛾 = 1 − 𝛼𝛼 (e.g., 
95%) of such experiments
– Example statement: “In 95% of experiments, 𝜃𝜃 ∈ [𝑎𝑎, 𝑏𝑏]”

• Bayesian equivalent: Credible interval is the interval [𝑎𝑎, 𝑏𝑏]
such that the posterior probability P 𝜃𝜃 ∈ [𝑎𝑎, 𝑏𝑏] 𝑌𝑌 = 𝛾𝛾 =
1 − 𝛼𝛼
– Example statement: “With 95% probability, 𝜃𝜃 ∈ [𝑎𝑎, 𝑏𝑏]”
– MCMC: Credible intervals can be estimated from quantiles of the samples

Terminology: Confidence vs. Credible Intervals
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BAYES FOR INTEGRATED T&E
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• There is a lot of data generated as a technology is 
developed

• Can we use Bayesian inference to build an integrated picture 
of behavior?

Data Sources

Model DataHistorical Data
SME Knowledge

DT Data OT Data Operational 
Performance
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• Consider two datasets, 𝑌𝑌1 and 𝑌𝑌2, that were collected in the 
same fashion 

• Under many (most?) likelihood models…
– Computing the posterior using both 𝑌𝑌1 and 𝑌𝑌2 as a single dataset

– Computing the posterior associated with 𝑌𝑌1, using that as the prior, and 
computing the posterior associated with 𝑌𝑌2

…produce the same answer

• We can iterate inference to build understanding as data 
accumulates

A Nice Feature
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• What if something changes in between data collections?
– System updates

– Environment or context changes

• Then posterior from one dataset can be modified before 
using as prior for subsequent analysis
– Example: “Downweighting” a posterior to increase its uncertainty – trust the 

previous data less than the new data

Changes in Data/Context
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Single Test Phase

Posterior 
(System 

Performance + 
Uncertainty)

Prior
(Theory, SME 
Input, Other 

Systems)

Bayesian 
Inference

T&E Data
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Single Test Phase

Prior
(Based on 

Previous Test 
Phase)

Downweight/Adjust as 
Necessary

Posterior 
(System 

Performance + 
Uncertainty)

Prior
(Theory, SME 
Input, Other 

Systems)

Bayesian 
Inference

T&E Data
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Iterated Inference

Single Test Phase

Prior
(Based on 

Previous Test 
Phase)

Downweight/Adjust as 
Necessary

Posterior 
(System 

Performance + 
Uncertainty)

Prior
(Theory, SME 
Input, Other 

Systems)

Bayesian 
Inference

T&E Data

Next Test Phase
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Prior
(Based on 

Previous Test 
Phase)

Multiple, Integrated Test Phases

Bayesian 
Inference

T&E Data

Posterior 
(System 

Performance + 
Uncertainty)

Downweight/Adjust as Necessary
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Questions?
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