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M Setup

* You are part of the T&E Working Integrated Product Team to test the
Mock-Cannon (based on the 155 mm Howitzer).

* You are working alongside Bayesian trained SMEs brought on by the
Product Manager to assist the Test Manager on inference for OT&E on this
system.

* You and Bayesian SMEs have assisted in formulating the Detailed Test Plan
(DTP).

* Given the requirements as defined in the Testing & Evaluation Master Plan
(TEMP), evaluate the viability of the Mock-Cannon as a potential capability.
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System Under Test: Mock-Cannon
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« TEMP defines an accuracy metric defined as a circular error probable (CEP):
» Cover proportion, p € [0,1] of any shot group to fall within a predefined radius
 CEPZ correspondstop = Z/100with Z € [0,100]

 We will use a condition that R gpso = 100 m, i.e., 50% of all shots fall within a radius

of 100 m.
* This metric determines if the Mock-Cannon is/is not an acceptable system.
https://en.wikipedia.org/wiki/M119_howitzer n ‘:fp n A '
HVNEESE B i wwEw
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Tutorial outline

Part 1 (Applying Bayes to the Mock-Cannon):
“Given that you’ve conducted a test/experiment, how do | apply Bayes Theorem?”

Model—- Likelihood— Prior— Hyperparameters— Posterior

Part 2 (Bayesian Decision Theory):
“Should | conduct a test?”

State — Action— Outcome— Utility— Projection

RAE'TDNAMN
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Part |:
Applying Bayes to the
Mock-Cannon

RAETDNAMN
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Setup of the Mock-Cannon

* Munition is based off the M107(HE) 155 < Independent variables:
mm artillery projectile. « Range: distance from gun-to-impact point

- Simulation is for unguided munitions. * Quadrant Elevation: firing angle w.r.t. the i - j plane.

« Dependent variable is point of impact (POI) error

Actual
impact point
“Mock-Cannon”

\
l ; Predicted ‘
. l impact point /.Vre‘ﬂor o)
J PO . Staﬂc

(e METDNAM
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Contributions to projectile motion

5
 Main forces and torques £ =
5 o : .\ o g
- Iy gravitational force; attraction between earth and munition § ’
5 £2;
« F,:dragforce; resistive force of an object travelling through a fluid <,
=g . . ~
» F;:lift force; responsible for lateral drift 0 . ‘ . . ‘
. . . . 0 5 10 15 20 25 30 35
* Overturning moment: associated with lift force 5
* Spin damping moment: opposes spin of projectile due to aerodynamic skin 5 41
friction 831
3
« Additional contributions: 27 ELF
aa 14
« Coriolis Force = 9
. 0 5 10 15 20 25 30 35
Magnus Force i: Range (km)
* Mach number dependent aerodynamic coefficients E L E LF
« Wind velocity field ™) g a7 jz -
* Pressure Envi | diti [ 15 E
. Temperature nvironmental conditions o %
- Air density B : ] o
VST ~ '
* Etc... Reng@(?r}%ZM SOOjT‘EIaOt;riﬂod_e%f?gctilgr? (ﬂ?\)
AE'TDOM
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Tester conducts
experiment, x:

1.
2.
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The Mock-Cannon simulator transforms experiments

to outcomes

Fire munition

Measure range and
quadrant elevation

Quadrant Range

Elevation  (km)
45° 154
63° 6.3
34° 9.4

“Black Box”
Transformation

—)

—)

What is the relationship
between any experiment and
its outcome?

UNCLASSIFIED

Tester observes
outcome, y:

Calculate POl error

151 m
27 m
62m
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Model the outcomes

* A model is a specification between the parameters and the observed data. The
outcome/response (POl error) variable can be written as

y=f(x0)+e¢
« Deterministic component, f(x, 8): exact relationship between variables

» Stochastic component, s: randomness/error inherent in the outcome

Mock-Cannon (assume a linear model)

f(x,0) = x0T = context X parameters x:1xd

X:nxd

pt RXR QEXQE RQEXRXQE 0:1xd

\_'_} ‘—'—’ ‘—'—‘ 5/’ tn X1

Log(Range)  Quadrant Elevation First-order cross term g:nx1

(radians) Number of trials, n

) . . . Number of features, d

e~ (0,021) - Assume errors i.i.d. and normally distributed I dentity matrix, I
mMmerooM Pl
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Likelihood distribution of outcomes

« With the model fully specified, the statistical distribution of outcomes, a.k.a. the
likelihood, is now:

L(y|0,x) = N(y; x0",5%)

* From the Mock-Cannon data, we find that log(POI error) better fits a normal
distribution. =

\

 For the rest of the talk, our outcome y is log(POI error).
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log(POI error)
RAE'TDNAMN
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Prior distribution of parameters

* The prior defines the parameter probability distribution.

* For the mock-cannon, we'll assume:

* § > random variable.
« ¢ - known (set to 1 for log(POI error))
* This give a simple Bayesian conjugate prior structure taking the form of a
Normal-Normal distribution:

1
L(y|0,X)P(0
P(O|y, X) = O )P(0) Distribution of
P(y|X) > 0 “fits” /slopes
Posterior o< Likelihood X Prior for our linear
Normal « Normal X Normal 4 model
-1 ;)C 1
METDOM [y
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Prior distribution defines hyperparameter vector, i

* The prior distribution on 0 takes the form of a multivariate normal:
P(0) = V(6; u,a%V)

* The parameters that characterize the parameter distribution are called
“hyperparameters”. They define our knowledge about the Mock-Cannon
system.

k= (V)

RAE'TDNAMN
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Posterior distribution: hyperparameter updates

* The posterior distribution on 0 takes the form of a multivariate normal:
POy, X) = N(O;u*, V™)

« As the prior and posterior belong to the same parametric family (Normal),
the prior is said to be conjugate to the likelihood.

* If you conduct n trials in environments X and measure outcomes y, a
knowledge update (k = k™) is given by:

K g (M; V) ~0OR~ K déf (V, W)

VT = (V_l + XTX)_l Change of variables wtr=w+XTXx
W =Vltv=uw - + _ ST

M+:(ﬂv_1 +:)_/>TX)V+ ’ K Vi =V+Yy X

Data adds to the
knowledge!

UNCLASSIFIED
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W=yl
v =uW
Knowledge update example
1 0 0 O
Let prior knowledge bex = (u =1[7,1,—1,1],V = 10 g é ) 8 )
01 0 0 0 00 01
wep-1_|0 01 0 0 L
0 0O 01 O
0 0 0 0.1
v=puW =[7,1,-1,1]W = [0.7,0.1,—0.1,0.1]

Intercept Log(Range) QExLog(Range) Log(POlerror)
1 0.8 9.46 7.56 4.52
1 1.1 8.69 9.56 4.21
1 0.6 8.85 5.31 2.64
RAETDAAMN
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Let prior knowledge be k = (u =
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Knowledge update example

wt=w+XTx

1
0.8
9.46 869 885
756 956 531

3.1 22.4
2.5 2.31 22.4 19.8
27 224 2431 201

224 198 201 176.1
vt=v+yTxX

w+r=w+

wt =

1 0.8
=v+[4.52,4.21,2.64] (1 1.1

1 06
= [12.07,9.93,102, 88.61]

0.8 9.46 7.56
1.1 8.69 9.56
0.6 8.85 531

8.69 9.56

9.46 7.56]
8.85 5.31

e
|
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w=y-1
v =uW
1 0 0 O
— 0 1 0 O
[7,1,-1,1L,V =10% 1 © °f)
0 0 0 1
X -
. X
Intercept Log(Range) QExLog(Range) Log(POlerror)
1 0.8 9.46 7.56 4.52
1 1.1 8.69 9.56 4.21
1 0.6 8.85 5.31 2.64
RAETDAAMN
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W=yl
v =uW
Knowledge update example
1 0 0 O
Let prior knowledge bex = (u =1[7,1,—1,1],V = 10 g é ) 8 )
0O 0 0 1
829 -1.11 -0.89 0.13 6

—-1.11 8.84 0.12 -0.93
—0.89 0.12 0.10 —-0.02
0.13 -093 -0.02 0.11

V+ — (W+)_1 —

pt =vt(W*)"! =[6.33,0.31,—0.54, 0.28]

-
i Y.
Intercept Log(Range) QExLog(Range) Log(POlerror)
1 0.8 9.46 7.56 4.52
1 1.1 8.69 9.56 421
1 0.6 8.85 5.31 2.64
RAETDANAMN
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P(0) — prior
P(6|y,X) — posterior

P (Hintercept)

P(6qE)

Intercept

=50 =25 00 25 50 75 100 125 15.0

Hintercept

QE

-100 -75 -5.0 -25 0.0 25 50 75 100

OqE

P (Hinterceptll)_}: X)

UNCLASSIFIED
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P (Hlog(Range))

P(HQExlog(Range))

ﬂ Log(Range)

Knowledge update example: Marginal distributions

P (Hlog(Range) |37r X)

P(HQExlog(Range) |37: X)

QQExlog(Range)

RAE'TDNAMN
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Setting the prior

* Incorporates subject matter expert (SME) knowledge. Posterior Predictive

{mean, std)

m— (525.03 m, 176.36 m)

* When little is known about 0, it's common to set u = 0 and

Unrea\"St.‘C === (541.61 m, 232.46 m)
0) === (739.07 m, 811.35 m)
V = large diagonal matrix. prior A= 10‘),. m— (8132.29 m, 132630.16 m)

« We'll do one better:

* The intercept shares the same units as the POl error.

Narrow prior
(A=10"3,10"7)

/

PDF

« Set intercept to > 100 m (req. thresh).
« We chose POl error intercept to be 500 m = pintercepr = 6.2

 LetV = Al Vary 1 and observe effect.

250 500 750 1000 1250 1500

 When setting the prior, we can observe the effects on the POI error (m)

prior predictive distribution:

P(IX, 1) = [ L(716,X)P(8)d6 = IV (5; Xp", 0?(1 + XVXT))

Good prior!
(A=10"1)

Tip: Convert normal to log-normal distribution
to view POl error (instead of log(POl error))

RAE'TDNAMN
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Mock-cannon simulator: response surface

* Represent outcome randomness in POl through Gaussian variability in muzzle
velocity and quadrant elevation to represent variation in repeated testing.

* This model shows curvature in response surface and non-trivial relationship

900
between contexts and outcomes.
800
Mach number dependent aerodynamic coefficients

Gravitational force 350 200
Drag force " 300 __ v
Lift force \ - 550 & 600 E
Coriolis Force \\\ i — 8
Ma N 200 © T
gnus Force { S 500 &
Overturning moment 150 6 $
Spin damping moment 100 ¢ 400 E
Wind velocity field 50 §

Pressure T 0 300

Temperature 90-\/ 0
5
Air density QUad 60 15 10 m\ 200
Etc Elev (gec 20 oange
€0ree ) 0 25 Ra 100
*Plot generated by simulating 50 firings per point and averaging POl error AMETDAM
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Part ll:
(Bayesian) Decision Theory
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Decision Theory Basics

* Decision theory: a branch of probability that relates beliefs and preferences to
making choices between alternatives.

* We concern ourself with normative decision theory:
 |dentifies optimal decisions assuming agent is fully rational

* Given two outcomes of the universe, A and B, express preferences via:
« A > Bifweprefer A over B.
A ~ Bif we areindifferent between 4 and B.
« A > Bif we prefer A over B or are indifferent.

» Define real-valued function U (utility) that maintains the ordinal relationship
between preferences:
« U(A) > U(B)iffA > B.
« U(A) = U(B) iff A~B.

RAE'TDNAMN
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Defining the decision space

 §,state space: realizations/configurations of the world
* A, action space: set of all available actions,a: S - O

* (), outcome space: consequence/reward of a joint state-action

* The preference of an outcome is defined as the utility, u,(o|s)

withu: 0 - R.
 Utilities are elicited that encode agent’s preferences.

RAE'TDNAMN
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Example: should you take an umbrella?

« §,state space: the weather forecast (sunny or raining)
* A, action space: either taking an umbrella or not

« 0, outcome space: the consequence of (not) having an umbrella in
different weather conditions

State:

Sunny

Outcome:

Outcome:

Dry,
Encumbered

Dr
v Action:
Umbrella

UNCLASSIFIED

+
Action:
No Umbrella

RAE'TDNAMN
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Example: should you take an umbrella?

« §,state space: the weather forecast (sunny or raining)
* A, action space: either taking an umbrella or not

* 0, outcome space: the consequence of (not) having an umbrella in

different weather conditions
State:
Raining

Action:

State:
+
Action:

Outcome: Outcome:

Dry,
Encumbered

Wet

Umbrella

RAE'TDNAMN
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Rank preferences using a utility function

A utility function takes our qualitative ranking of outcomes and represents

them as ordinal, real numbers.

Preference

Dry > Dry, Encumbered > Wet

(D|S, NU) > (DE|S, U)~(DE|R,U) > (W|R,NU)

! ! !

States:
- Raining, R
- Sunny, S
Actions:
- No Umbrella, NU
-Umbrella, U
Outcomes:
-Dry, D
- Dry, Encumbered, DE
-Wet, W

Utility

uyy(DIS) > uy(DE|S) = uy(DE|R) > uny(WIR)

1 > 0.80

Some actions have costs! Can be

thought of as:

uy(DE|S) = uny(D|S) — C(U)
= 1 — 0.2
C(U): cost of carrying umbrella

UNCLASSIFIED
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Decisions under uncertainty

Principle of maximum expected utility: Under state uncertainty, the optimal

action maximizes the expected utility:
a* € argmax Eg|u,(0]|s)]

“Decision Table”

a€EA

States Sunny Raining
Actions P(s;) = 70% P(sy) = 30%
No umbrella, a, Dry Wet

Uqg, (011]s1) =1

Uq, (012]s2) =0

Umbrella, a,

Encumbered, dry
Uq, (021]s1) = 0.8

Encumbered, dry
Uq, (0221s2) = 0.8

“Irrational” action

amg=1x07+0x03=07:>

ii(a,) = 0.8 X 0.7 + 0.8 X 0.3 = 0.8

UNCLASSIFIED

O
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How do we apply decisions to the Mock-Cannon?

« Atester’s decision process involves a sequence of decisions (sequential decision

theory).

Knowledge, k

« Terminal decisions (Yes nodes) are decisions that end the sequence.

Do | know
enough to
accept/
reject?

Conduct
»M=> Knowledge, k*
Test

UNCLASSIFIED

Do | know
enough to
accept/

reject?

Conduct
m Test

 Intermediate (non-terminal) decisions (No nodes) influence future terminal decisions.

RAE'TDNAMN
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Bayesian Decision Theory handles state uncertainty

* Extend the discussion to the continuum, e.g., the mock-cannon
(more difficult to enumerate in practice; integrate over states)
 §,state space: uncertain parameters 0 as defined by k, or 0|k
* Bayes Rule: probability distributions defined by the prior
* A, action space: {Accept, Reject, Continue Testing} = {4, R, T}
« Terminal decisions are defined as D: {4, R}
* (0, outcome space: fraction of points contained within CEP50 radius

State: 0|k

» “Containment Probability” + -
Action: Containment

* No longer discrete outcomes

D:fAccept, Reject} Probability

T: {Continue Test]

UNCLASSIFIED
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Assessing the utility of
terminal decisions

RMETDNM BT
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M Reject utility, ug ()

* [f you reject the Mock-Cannon, i.e., send it back to
the manufacturer, then it adds no value to you.

up(x) =0

RAE'TDNAMN
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Accept option: representing preferences

* We define our preference to be the containment probability, Preferable

p., representing the probability of fires that land within
RCEP5O — 100 m (10g(100) =~ 4‘61).

PDF

* Integrate area under the likelihood distribution:

log(RcEP50)

pc(x,0) = f L(y|x67,02)dy

— 00

» Our preference of any 0 is averaged over all operational
environments:

PDF

pc(0) = Ex[pc(x,0)]

Less
* The Mock-Cannon is more preferable with increasing Preferable
containment probability. 30 2 4 6 5 10
log(POI error)
MeErDoMN Py
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M Accept utility, u 4 (x)

* The utility of any state/parameter 8 encodes our
preference relative to the requirement threshold: Utility (C, = 0)

1.0

u(@) = sigmoid(p,.(@) — 0.5)

* The accept utility is the expected utility over all o5
parameters minus some fixed acquisition cost (e.g. cost to
productionalize the system) (C,):

a

0.0 0’5 1.0
Pc

Requi
Uy (K) — E9|K[u(0)] T CA thre(:ﬂgllgle(rgng;EO)

RAE'TDNAMN
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M Terminal utility, up (x)

* Terminal decisions are actions that end the sequential decision
process,d € D:{A,R}.

* The terminal utility is maximized over the terminal action utilities
in accordance with the principle of maximum expected utility:

up (k) = max(us (x), ug (1) = 0)

RAE'TDNAMN
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Assessing the utility of the
intermediate decision

RAETDNAAMN EN
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Utility function for Continue Testing

* The continue testing action, T, addresses the questions:
« “What is the value in conducting another set of tests in environment X?”

* “Would a future test X yield a higher overall terminal utility?” @06
 We will project out future states by sampling outcomes. < N
<
* As we do not know the outcomes before conducting X, we can >
simulate future outcomes from the posterior predictive distribution: ®
- _ - - _ - . T 2 T
P(FpplX, k) = [ L(3p|0,X)P(815,X)dB = I (5pp; XpT, 0?(1+ XVXT)) | @ \
* Yyp: simulated outcome vectors from the posterior predictive. ° 2 0a(POI error) °
A7
Intercept QE Log(Range) QExLog(Range) v v v
Yop1  Ypp2  Ypp3 Example of 5 random draws
1 0.2 8.08 1.67 4.52 7.14 5.80 that represent potential
1 1.1 8.69 9.56 343 | 855 | 601 outcomes from conducting a
test
1 0.6 8.85 5.31 2.34 7.28 5.44
AE'TDOM
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Sequential decision theory projects future knowledge ¢

states with a decision tree
* Instead of a decision table, we can visualize the (A, §, 0) with a decision tree.

* The branching possibilities are in principle endless for continuous states.
Visualize for a 1-step lookahead.

 Project out M knowledge representations (x*) for test option X7.

Update Equations

Vi = (V1 4+ XTx,) ™
wh= (V= + Y X))Vt Forward Prop

RAE'TDNAMN
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Continue Testing utility is the expected terminal utility &

* The continue testing utility is the expectation over all future terminal
utilities minus the cost of performing the test (C;):

ur(k) = E+ppcfup(e™)] -

Note: this is an inductive process.

Additional future projections follow a

similar pattern, e.g.,

Ur (k") = Epr+ et [up (™)) = Cr <

ur (k)

Backward prop

UNCLASSIFIED
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The optimal action

 We arrive at the optimal action over the entire action space:

a* = argmax(ua(ic)) = argmax(up (k), ur(x)) = argmax(uy (k) , up(x) = 0,ur(k))
aceA aceA aeA

* This process repeats sequentially with every test conducted until the
intermediate action (Continue Testing) is no longer optimal/maximal.

« X consists of 30 test points. | (mean, std)
=== Prior Pred: (1100 m, 2164 m)
. a* — argmaX(O.lo, O, 014) =T e Post.Pred:( 98m, 32m)
aedq A R T
Intercept Log(Range) QExLog(Range) Log(POl error) " After testing
(true outcome) o

1 0.8 9.46 7.56 4.52
1 1.1 8.69 9.56 4.21

1 0.6 8.85 5.31 2.64 y Before testing

~ 27 more rows ~ 0 200 Pﬁ(l:;)IOerrorfi((gr?) 800 1000

RAE'TDNAAMN

UNCLASSIFIED



UNCLASSIFIED

Summary, Part 1: Applying Bayes to the Mock-Cannon

Model, Likelihood, Evaluation Prior, Posterior, Knowledge update Setting a prior

|

(mean, std)

i
log(R I = (525.03 m, 176.36 m)
g( CEPSO) I ) UnrealistiC = (541.61m, 232.46 m)
| : - 0) === (739.07 m, 811.35 m)
| pOSterlor prior A= 10‘1. = (8132.29 M, 132630.16 m)
I _—

Narrow prior
(=10, 107%)

/

0 2 4 6 8 ~6 —4 2 0 2 4 6

log(POI error) 2

250 500 750 1000 1250 1500

POl error (m)

Good prior!
(A=10"%)

RAE'TDNAMN
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Preferences encoded

Decision space . . .
in utility function

N Outcome:
Containment [[EESS S
D:{Accept, Reject] Prob, p.(6)

1.0

0.5

u(d)

T: {Continue Test}

Summary, Part lI: Bayesian Decision Theory

Principle of
maximum expected utility

- a* € argmax Eg [uar(o|s)]
a'e A

“Rational agents maximize

_ expected utility.”
up (x7)
Sequential decisions
analyzed by projecting up (1)
future states

up (1

) 1p (1) p(Kpy)
Forward Prop Backward prop AMAETDAAM
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Questions?

RAE'TDNAMN

UNCLASSIFIED



UNCLASSIFIED

References

» Bayesian Decision Theory
« Berger, J. O. Statistical Decision Theory and Bayesian Analysis 2" Edition. Springer, New York (2013).
« Parmigiani, G. and Inoue, L. Decision Theory: Principles and Applications. Wiley, London, UK (2009).
 Lindley, D. V. Making Decisions 2" Edition. Wiley, London, UK (1971).

* Lindley, D.V.“On a measure of the information provided by an experiment,” Ann. Math. Statistics, vol.
27, pp. 986-1005 (1956).

* H. Chernoff. Sequential Analysis and Optimal Design. Philadelphia, SIAM (1972).

 Munition Simulations

« W.Y.Lim.“Predicting the Accuracy of Unguided Artillery Projectiles” M.S. thesis, Naval Postgraduate
School, Montery, CA (2016). https://apps.dtic.mil/sti/tr/pdf/AD1029824.pdf

« M.E.Wessam and Z. H. Chen. “Firing precision evaluation for unguided artillery projectile” in Int. Conf.
Artificial Intell. Ind. Eng. (2015).

* R.L.McCoy. “Modern Exterior Ballistics” Atglen, PA: Schiffer Publishing (2012).

« M. Skande. “Numerical solution to a nonlinear external ballistics model for a direct fire control system”
M.S. thesis, Dept. Mach. Design, KTH School of Ind. Eng. Manage., Stockholm, Sweden (2014).

« M. Khalil, H. Abdalla, and O. Kamal. “Dispersion analysis for spinning artillery projectile”. 13t Int. Conf.
ASAT, Cairo, Egypt, Mar 26-28 (2009).

RAETDNAMN
UNCLASSIFIED AvEES B ERwEw



https://apps.dtic.mil/sti/tr/pdf/AD1029824.pdf

UNCLASSIFIED

Backup slides
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Lateral Deflection error (m)

—100

—200

=300
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Define the likelihood of outcomes

* The likelihood is a specification of the stochastic nature of outcomes.

300

2D Normal
of positions

1D Rayleigh

200

100

04---

-300

L
—200 =100 0 100 200
Longitudinal Range error (m)

300

Counts

Y =log(y)

of radii

1D Log-Rayleigh
of radii exponents

Counts

0 100 200 300 200
POI error (m)

3 4 5 6
Y = log(POI error)

~y
~y

1D Normal
of radii exponents

Y = log(POI error)

To use the Bayesian conjugate prior construction, likelihood needs to be normally distributed.

The likelihood:

L(y|0,x) = N (y; x07,0%)

UNCLASSIFIED
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Trajectory model

5
* Linear motion can be described by Newton’s 2" |aw: I |fg
L 3
. ﬁg: gravitational force; attraction between earth and munition £ 2
S <
« F,:dragforce; resistive force of an object travelling through a fluid = - |
0 5 10 15 20 25 30 35
» F;:lift force; responsible for lateral drift s
€ 4-
« Rotational kinematics accounted for: el
« Overturning moment: associated with lift force 27 D
: : : N L Fy +F,
* Spin damping moment: opposes spin of projectile due to o N\J
aerodynamic skin friction i: Range (km)
 We are implementing the Indirect Fires Delivery Accuracy FotFa+h =
Program (IFDAP) model. s f
« Omits Coriolis and Magnus forces as they have negligible effects | s i
* Fast computation; maintains high fidelity compared to full models. 11'25,;;681012 _zoo_mo(ojo
lhim) 14 500,400 (2l geflection (T
METROM
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M107(HE) 155 mm properties

General Parameters Weapon Data

Time Step 0.01s Twist rate 20 calibers/rev
Gravitational 9.81 m/s? | 0.1461 kgm?3
acceleration

Air C, (specific heat at 1005 J/(kg K) Mass 43.091 kg
constant pressure)

Air C,, (specific heat at 718 J/(kg K) Projectile diameter 0.155m
constant volume)

https://en.wikipedia.org/wiki/M107_projectile
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Gravitational Force

* I, :gravitational force: attraction between two objects with mass

* Induces symmetric parabolic motion
5

* G :gravitational constant
« M :mass of earth £ 41
@ 31
®)
-
2 2-
=
<1
>
O T T T T T T
0 5 10 15 20 25 30 35
X: Range (km)
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Drag force

F, =—%scde\7

» Drag force: air resistance; reduces projectile range and causes higher angle of
impact

« S:reference cross-sectional area perpendicular to axis of symmetry

* C,:dragforce coefficient 5
« p:density of air ’é‘ 4-
. I7:projectile velocity vector =
g
-
= 2
=
<1
=
0 . . . . . .
0 5 10 15 20 25 30 35
X: Range (km)
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Lift force

.1 L. -
F =§PSCLQ[V x(JxV)]

 Lift force: perpendicular to the trajectory, tending to pull
the projectile in the direction its nose is pointed.

« E.g.,if the nose is pointed above the trajectory, the lift force
causes the projectile to climb.

» S:reference cross-sectional area 25 _
- C, :drag force coefficient | : %
* p:density of air 10 2
- V: projectile velocity vector 05 =
 j:unit vector along projectile axis of symmetry X 2@2 | o ‘0 0.0

» The spinning munition precesses about V, and the z- ge”‘ my -0 499 o deflection ()

component of the lift force produces a lateral drift in range.
RMETDNM
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Rotational effects

» Forces acting on projectile induce rotations, which can be written down using Newton’s
second law for rotation: R
YT =la

« Sum of the torques = (moment of inertia) x (angular acceleration)

* Two significant moments
« Overturning moment: 7, = %deCMaVZ(? X f)

» Associated with lift force
« |f projectile’s nose lies above its trajectory, a positive overturning moment acts to increase yaw angle

* Spindamping moment: 7,4 = — %deZVa)Clpj
« w:axial angular speed (radians/second)

* d:referencediameter
* Opposes spin of projectile due to aerodynamic skin friction

» Always tends to reduce axial spin

« Rotational deflections from the x-y plane (precession) tend to result in lateral deflections.

RAE'TDNAMN
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Decision theory constraints

« Constraints are imposed upon preferences:
» Completeness. Exactly on the following holds: A > B, B > A, or A~B.
* Transitivity.IfA > Band B > C,then A > C.
* Continuity.If A = C > B, then there exists a probability p such that pA + (1 — p)B~C.

* Implies you cannot have a discontinuous jump in preferences once you encounter uncertainty

* Violated with lexicographic preferences

» Independence. |If A > B,thenfor any C and probability p, [A:p;C:1 —p] > [B:p; C: 1 — p].

* These are the constraints on rational preferences. If follows from this that
there exists a real-valued function U such that
« U(4) >U(B)iffA > B.
« U(A) = U(B) iff A~B.

RAE'TDNAMN
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