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Setup

• You are part of the T&E Working Integrated Product Team to test the 

Mock-Cannon (based on the 155 mm Howitzer). 

• You are working alongside Bayesian trained SMEs brought on by the 

Product Manager to assist the Test Manager on inference for OT&E on this 

system.

• You and Bayesian SMEs have assisted in formulating the Detailed Test Plan 

(DTP).

• Given the requirements as defined in the Testing & Evaluation Master Plan 

(TEMP), evaluate the viability of the Mock-Cannon as a potential capability.

UNCLASSIFIED

UNCLASSIFIED
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System Under Test: Mock-Cannon

UNCLASSIFIED

UNCLASSIFIED

Longitudinal Range error (m)

L
at

er
al

 D
ef

le
ct

io
n

 e
rr

o
r 

(m
)

• TEMP defines an accuracy metric defined as a circular error probable (CEP):

• Cover proportion, 𝑝 ∈ [0,1] of any shot group to fall within a predefined radius

• CEP𝑍 corresponds to 𝑝 = 𝑍/100 with 𝑍 ∈ [0,100]

• We will use a condition that 𝑅𝐶𝐸𝑃50 = 100 m, i.e., 50% of all shots fall within a radius 

of 100 m.

• This metric determines if the Mock-Cannon is/is not an acceptable system.
https://en.wikipedia.org/wiki/M119_howitzer
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Tutorial outline

Part 1 (Applying Bayes to the Mock-Cannon):

“Given that you’ve conducted a test/experiment, how do I apply Bayes Theorem?” 

Model→ Likelihood→ Prior→ Hyperparameters→ Posterior

Part 2 (Bayesian Decision Theory):

“Should I conduct a test?”

State → Action→ Outcome→ Utility→ Projection

UNCLASSIFIED

UNCLASSIFIED
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Part I:

Applying Bayes to the 

Mock-Cannon

UNCLASSIFIED

UNCLASSIFIED
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Setup of the Mock-Cannon

• Munition is based off the M107(HE) 155 

mm artillery projectile.

• Simulation is for unguided munitions.

UNCLASSIFIED

UNCLASSIFIED

Predicted 
impact point

Actual 
impact point

• Independent variables:

• Range: distance from gun-to-impact point

• Quadrant Elevation: firing angle w.r.t. the 𝑖- 𝑗 plane.

• Dependent variable is point of impact (POI) error

“Mock-Cannon”
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Contributions to projectile motion

• Main forces and torques

• Ԧ𝐹𝑔: gravitational force; attraction between earth and munition

• Ԧ𝐹𝑑: drag force; resistive force of an object travelling through a fluid

• Ԧ𝐹𝑙: lift force; responsible for lateral drift

• Overturning moment: associated with lift force

• Spin damping moment: opposes spin of projectile due to aerodynamic skin 
friction

• Additional contributions:
• Coriolis Force

• Magnus Force

• Mach number dependent aerodynamic coefficients

• Wind velocity field

• Pressure

• Temperature

• Air density

• Etc…

UNCLASSIFIED

UNCLASSIFIED
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UNCLASSIFIED

UNCLASSIFIED

1. Fire munition
2. Measure range and 

quadrant elevation

Tester observes 
outcome, 𝑦:

𝑓: 𝑥 → 𝑦

“Black Box”
Transformation

The Mock-Cannon simulator transforms experiments 

to outcomes

What is the relationship 
between any experiment and 

its outcome?

?

??

?

?

?

Tester conducts 
experiment, 𝒙:

Calculate POI error

Quadrant 
Elevation

Range 
(km)

45˚ 15.4

63˚ 6.3

34˚ 9.4

POI error

151 m

27 m

62 m
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Model the outcomes 

• A model is a specification between the parameters and the observed data. The 

outcome/response (POI error) variable can be written as

𝑦 = 𝑓 𝒙, 𝜽 + 𝜀

• Deterministic component, 𝑓(𝒙, 𝜽): exact relationship between variables

• Stochastic component, 𝜀: randomness/error inherent in the outcome

 𝜀~𝒩 0, 𝜎2𝕀 → Assume errors i.i.d. and normally distributed

UNCLASSIFIED

𝒙 ∶ 1 × 𝑑
𝑋 ∶ 𝑛 × 𝑑
𝜽 ∶ 1 × 𝑑
Ԧ𝑦 ∶ 𝑛 × 1
Ԧ𝜀 ∶ 𝑛 × 1

Number of trials, 𝑛
Number of features, 𝑑

Identity matrix, 𝕀

Log(Range) Quadrant Elevation
(radians)

First-order cross term

𝑓 𝒙, 𝜽 = 𝒙𝜽𝑇 = context × parameters

= 𝜃𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝜃𝑅𝑥𝑅 + 𝜃𝑄𝐸𝑥𝑄𝐸 + 𝜃𝑅𝑄𝐸𝑥𝑅𝑥𝑄𝐸

UNCLASSIFIED

Mock-Cannon (assume a linear model)
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Likelihood distribution of outcomes

• With the model fully specified, the statistical distribution of outcomes, a.k.a. the 

likelihood, is now:

ℒ 𝑦 𝜽, 𝒙 = 𝒩(𝑦; 𝒙𝜽𝑇 , 𝜎2)

• From the Mock-Cannon data, we find that log(POI error) better fits a normal 

distribution.

• For the rest of the talk, our outcome 𝑦 is log(POI error).

UNCLASSIFIED

UNCLASSIFIED

log(POI error)
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Prior distribution of parameters

• The prior defines the parameter probability distribution.

• For the mock-cannon, we’ll assume:

• 𝜽 → random variable.

• 𝜎 → known (set to 1 for log(POI error))

• This give a simple Bayesian conjugate prior structure taking the form of a 

Normal-Normal distribution:

UNCLASSIFIED

UNCLASSIFIED

𝑦

𝑥

𝑃 𝜽 𝑦, 𝑋 =
ℒ 𝑦 𝜽, 𝑋 𝑃(𝜽)

𝑃(𝑦|𝑋)
Posterior ∝ Likelihood ×  Prior

 Normal ∝  Normal ×  Normal

Distribution of 
“fits” /slopes 
for our linear 

model
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Prior distribution defines hyperparameter vector, 𝜿

• The prior distribution on 𝜽 takes the form of a multivariate normal:

𝑃 𝜽 = 𝒩 𝜽; 𝝁, 𝜎2𝑉

• The parameters that characterize the parameter distribution are called 

“hyperparameters”. They define our knowledge about the Mock-Cannon 

system.

𝜅 = (𝝁, 𝑉)

UNCLASSIFIED

UNCLASSIFIED
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Posterior distribution: hyperparameter updates

• The posterior distribution on 𝜽 takes the form of a multivariate normal:

𝑃 𝜽| Ԧ𝑦, 𝑋 = 𝒩(𝜽; 𝝁+, 𝜎2𝑉+)

• As the prior and posterior belong to the same parametric family (Normal), 

the prior is said to be conjugate to the likelihood. 

• If you conduct 𝑛 trials in environments 𝑋 and measure outcomes Ԧ𝑦, a 

knowledge update 𝜅 → 𝜅+  is given by:

UNCLASSIFIED

UNCLASSIFIED

Data adds to the 
knowledge!

𝑉+ = 𝑉−1 + 𝑋𝑇𝑋
−1

𝝁+ = 𝝁𝑉−1 + Ԧ𝑦𝑇𝑋 𝑉+

𝑊+ = 𝑊 + 𝑋𝑇𝑋
𝝂+ = 𝝂 + Ԧ𝑦𝑇𝑋

Change of variables
𝑊 = 𝑉−1; 𝝂 = 𝝁𝑊

𝜅 ≝ (𝝁, 𝑉) 𝜅 ≝ (𝝂, 𝑊)~OR~
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Knowledge update example

UNCLASSIFIED

UNCLASSIFIED

Intercept QE Log(Range) QE×Log(Range) Log(POI error)

1 0.8 9.46 7.56 4.52

1 1.1 8.69 9.56 4.21

1 0.6 8.85 5.31 2.64

𝑋 Ԧ𝑦

𝑊 = 𝑉−1 =

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

𝝂 = 𝝁𝑊 = 7,1, −1,1 𝑊 = [0.7,0.1, −0.1,0.1]

u 

Let prior knowledge be 𝜅 = (𝝁 = 7,1, −1,1 , 𝑉 = 10
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

𝑊 = 𝑉−1

𝝂 = 𝝁𝑊
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Knowledge update example

UNCLASSIFIED

UNCLASSIFIED

Intercept QE Log(Range) QE×Log(Range) Log(POI error)

1 0.8 9.46 7.56 4.52

1 1.1 8.69 9.56 4.21

1 0.6 8.85 5.31 2.64

𝑋 Ԧ𝑦

𝑊+ = 𝑊 + 𝑋𝑇𝑋

𝑊+ = 𝑊 +

1 1 1
0.8 1.1 0.6

9.46 8.69 8.85
7.56 9.56 5.31

1 0.8 9.46 7.56
1 1.1 8.69 9.56
1 0.6 8.85 5.31

𝑊+  =

3.1 2.5 27 22.4
2.5 2.31 22.4 19.8
27 22.4 243.1 201

22.4 19.8 201 176.1
𝝂+ = 𝝂 + Ԧ𝑦𝑇𝑋

𝝂+ = 𝝂 + 4.52, 4.21, 2.64
1 0.8 9.46 7.56
1 1.1 8.69 9.56
1 0.6 8.85 5.31

𝝂+ = [12.07, 9.93, 102, 88.61]

𝑊 = 𝑉−1 =

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

𝝂 = 𝝁𝑊 = 7,1, −1,1 𝑊 = [0.7,0.1, −0.1,0.1]

v 

u 

Let prior knowledge be 𝜅 = (𝝁 = 7,1, −1,1 , 𝑉 = 10
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

𝑊 = 𝑉−1

𝝂 = 𝝁𝑊
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Knowledge update example

UNCLASSIFIED

UNCLASSIFIED

Intercept QE Log(Range) QE×Log(Range) Log(POI error)

1 0.8 9.46 7.56 4.52

1 1.1 8.69 9.56 4.21

1 0.6 8.85 5.31 2.64

𝑋 Ԧ𝑦

𝑊+ = 𝑊 + 𝑋𝑇𝑋

𝑊+ = 𝑊 +

1 1 1
0.8 1.1 0.6

9.46 8.69 8.85
7.56 9.56 5.31

1 0.8 9.46 7.56
1 1.1 8.69 9.56
1 0.6 8.85 5.31

𝑊+  =

3.1 2.5 27 22.4
2.5 2.31 22.4 19.8
27 22.4 243.1 201

22.4 19.8 201 176.1
𝝂+ = 𝝂 + Ԧ𝑦𝑇𝑋

𝝂+ = 𝝂 + 4.52, 4.21, 2.64
1 0.8 9.46 7.56
1 1.1 8.69 9.56
1 0.6 8.85 5.31

𝝂+ = [12.07, 9.93, 102, 88.61]

𝑉+ = 𝑊+ −1 =

8.29 −1.11 −0.89 0.13
−1.11 8.84 0.12 −0.93
−0.89 0.12 0.10 −0.02
0.13 −0.93 −0.02 0.11

𝝁+ = 𝝂+ 𝑊+ −1 = [6.33, 0.31, −0.54, 0.28]

𝑊 = 𝑉−1 =

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

𝝂 = 𝝁𝑊 = 7,1, −1,1 𝑊 = [0.7,0.1, −0.1,0.1]

v 

u 

w 

Let prior knowledge be 𝜅 = (𝝁 = 7,1, −1,1 , 𝑉 = 10
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

𝑊 = 𝑉−1

𝝂 = 𝝁𝑊
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Knowledge update example: Marginal distributions

UNCLASSIFIED

UNCLASSIFIED
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𝑷 𝜽 → 𝐩𝐫𝐢𝐨𝐫
𝑷 𝜽 𝒚, 𝑿 → 𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫 Intercept

QE

Log(Range)

Cross-
term

𝜃intercept

𝜃QE

𝜃log(Range)

𝜃QE×log(Range)
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Setting the prior

• Incorporates subject matter expert (SME) knowledge.

• When little is known about 𝜽, it’s common to set 𝝁 = 0 and 

V = large diagonal matrix. 

• We’ll do one better:

• The intercept shares the same units as the POI error.

• Set intercept to > 100 m (req. thresh).

• We chose POI error intercept to be 500 m ⟹ 𝜇𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ≈ 6.2

• Let 𝑉 = 𝜆𝕀. Vary 𝜆 and observe effect.

• When setting the prior, we can observe the effects on the 

prior predictive distribution:

𝑃 Ԧ𝑦|𝑋, 𝜅 = ∫ ℒ Ԧ𝑦 𝜽, 𝑋 𝑃 𝜽 𝑑𝜽 = 𝒩 Ԧ𝑦; 𝑋𝝁𝑇 , 𝜎2 𝕀 + 𝑋𝑉𝑋𝑇

UNCLASSIFIED

UNCLASSIFIED

Narrow prior
 (𝜆 = 10−3, 10−2)

Good prior! 
(𝜆 = 10−1)

Tip: Convert normal to log-normal distribution 
to view POI error (instead of log(POI error))
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Mock-cannon simulator: response surface

• Represent outcome randomness in POI through Gaussian variability in muzzle 

velocity and quadrant elevation to represent variation in repeated testing.

• This model shows curvature in response surface and non-trivial relationship 

between contexts and outcomes.

UNCLASSIFIED

UNCLASSIFIED

*Plot generated by simulating 50 firings per point and averaging POI error

Mach number dependent aerodynamic coefficients

____ Gravitational force

____ ____Drag force

____ ____ ____ Lift force

____ ____ ____ ____ Coriolis Force

____ ____ ____ ____ ____ Magnus Force

____ ____ ____ ____ ____ ____ Overturning moment

____ ____ ____ ____ ____ ____ ____ Spin damping moment

____ ____ ____ ____ ____ ____ ____ ____ Wind velocity field

____ ____ ____ ____ ____ ____ ____ ____ ____ Pressure

____ ____ ____ ____ ____ ____ ____ ____ ____ ____ Temperature

____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ Air density

____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ Etc…
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Part II:

(Bayesian) Decision Theory

UNCLASSIFIED

UNCLASSIFIED
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Decision Theory Basics

• Decision theory: a branch of probability that relates beliefs and preferences to 
making choices between alternatives.

• We concern ourself with normative decision theory:

• Identifies optimal decisions assuming agent is fully rational

• Given two outcomes of the universe, 𝐴 and 𝐵, express preferences via:

• 𝐴 ≻ 𝐵 if we prefer 𝐴 over 𝐵.

• 𝐴 ~ 𝐵 if we are indifferent between 𝐴 and 𝐵.

• 𝐴 ≽ B if we prefer 𝐴 over 𝐵 or are indifferent.

• Define real-valued function 𝑈 (utility) that maintains the ordinal relationship 
between preferences:

• 𝑈 𝐴 > 𝑈 𝐵  iff 𝐴 ≻ 𝐵.

• 𝑈 𝐴 = 𝑈 𝐵  iff 𝐴~𝐵.

UNCLASSIFIED

UNCLASSIFIED
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Defining the decision space

• 𝒮, state space: realizations/configurations of the world

• 𝒜, action space: set of all available actions, 𝑎: 𝒮 → 𝒪

• 𝒪, outcome space: consequence/reward of a joint state-action

UNCLASSIFIED

UNCLASSIFIED

• The preference of an outcome is defined as the utility, 𝑢𝑎 𝑜 𝑠  
with 𝑢: 𝒪 → ℝ.
• Utilities are elicited that encode agent’s preferences.
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Example: should you take an umbrella?

• 𝒮, state space: the weather forecast (sunny or raining)

• 𝒜, action space: either taking an umbrella or not

• 𝒪, outcome space: the consequence of (not) having an umbrella in 

different weather conditions

UNCLASSIFIED

UNCLASSIFIED

Action:

No Umbrella

State:

Sunny

+
Outcome:

Dry
Action:

Umbrella

+

Outcome:

Dry, 
Encumbered

State:

Sunny
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Example: should you take an umbrella?

• 𝒮, state space: the weather forecast (sunny or raining)

• 𝒜, action space: either taking an umbrella or not

• 𝒪, outcome space: the consequence of (not) having an umbrella in 

different weather conditions

UNCLASSIFIED

UNCLASSIFIED

Action:

No Umbrella

State:

Raining

+
Outcome:

Wet
Action:

Umbrella

State:

Raining

+

Outcome:

Dry,
Encumbered
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Rank preferences using a utility function

• A utility function takes our qualitative ranking of outcomes and represents 

them as ordinal, real numbers.

UNCLASSIFIED

UNCLASSIFIED

Dry ≻  Dry, Encumbered ≻  Wet

States:
- Raining, 𝑅
- Sunny, 𝑆

Actions:
- No Umbrella, 𝑁𝑈
- Umbrella, 𝑈

Outcomes:
- Dry, 𝐷
- Dry, Encumbered, 𝐷𝐸
- Wet, 𝑊

D 𝑆, 𝑁𝑈 ≻ 𝐷𝐸 𝑆, 𝑈 ~(𝐷𝐸|𝑅, 𝑈) ≻ (W|R, NU)

𝑢𝑁𝑈 D 𝑆 > 𝑢𝑈 𝐷𝐸 𝑆 = 𝑢𝑈 𝐷𝐸 𝑅 > 𝑢NU(W|R)

1 >  0.80 =  0.80 >  0

Utility

Preference

Some actions have costs! Can be 
thought of as:

𝑢𝑈 𝐷𝐸 𝑆 = 𝑢𝑁𝑈 𝐷 𝑆 − 𝐶 𝑈
 =  1 −  0.2

 𝐶 𝑈 : cost of carrying umbrella
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Decisions under uncertainty

UNCLASSIFIED

UNCLASSIFIED

States
Actions

Sunny
𝑃 𝑠1 = 70%

Raining
𝑃 𝑠2 = 30%

No umbrella, 𝑎1 Dry
𝑢𝑎1

𝑜11|𝑠1 = 1
Wet

𝑢𝑎1
(𝑜12|𝑠2) = 0

Umbrella, 𝑎2 Encumbered, dry
𝑢𝑎2

𝑜21|𝑠1 = 0.8
Encumbered, dry
𝑢𝑎2

𝑜22|𝑠2 = 0.8

ത𝑢(𝑎1) = 1 × 0.7 + 0 × 0.3 = 0.7

ത𝑢(𝑎2) = 0.8 × 0.7 + 0.8 × 0.3 = 0.8

“Decision Table”

Principle of maximum expected utility: Under state uncertainty, the optimal 
action maximizes the expected utility:

𝑎∗ ∈ argmax
𝑎 ∈ 𝒜

 𝔼𝒮 𝑢𝑎 𝑜|𝑠

“Rational” action

“Irrational” action
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How do we apply decisions to the Mock-Cannon?

• A tester’s decision process involves a sequence of decisions (sequential decision 
theory).

UNCLASSIFIED

UNCLASSIFIED

Knowledge, 𝜅

Do I know 
enough to 

accept/
reject?

Yes

No Knowledge, 𝜅+

Do I know 
enough to 

accept/
reject?

• Terminal decisions (Yes nodes) are decisions that end the sequence.

• Intermediate (non-terminal) decisions (No nodes) influence future terminal decisions.

Yes

No

Conduct
 

Test
Conduct

 
Test

…
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Bayesian Decision Theory handles state uncertainty

• Extend the discussion to the continuum, e.g., the mock-cannon 

(more difficult to enumerate in practice; integrate over states)

• 𝒮, state space: uncertain parameters 𝜽 as defined by 𝜅, or 𝜽|𝜅

• Bayes Rule: probability distributions defined by the prior

• 𝒜, action space: Accept, Reject, Continue Testing = {𝐴, 𝑅, 𝑇}

• Terminal decisions are defined as 𝐷: {𝐴, 𝑅}

• 𝒪, outcome space: fraction of points contained within CEP50 radius

• No longer discrete outcomes

• “Containment Probability”

UNCLASSIFIED

UNCLASSIFIED
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Assessing the utility of 

terminal decisions

UNCLASSIFIED

UNCLASSIFIED
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Reject utility, 𝒖𝑹(𝜿)

• If you reject the Mock-Cannon, i.e., send it back to 

the manufacturer, then it adds no value to you. 

UNCLASSIFIED

UNCLASSIFIED

𝑢𝑅 𝜅 = 0
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Accept option: representing preferences

• We define our preference to be the containment probability, 

𝑝𝑐 , representing the probability of fires that land within 

𝑅𝐶𝐸𝑃50 = 100 𝑚 (log 100 ≈ 4.61).

• Integrate area under the likelihood distribution:

𝑝𝑐(𝒙, 𝜽) = න

−∞

log(𝑅𝐶𝐸𝑃50)

ℒ 𝑦 𝒙𝜽𝑇 , 𝜎2 𝑑𝑦

• Our preference of any 𝜽 is averaged over all operational 

environments:

ҧ𝑝𝑐(𝜽) = 𝔼𝒙[𝑝𝑐 𝒙, 𝜽 ]

• The Mock-Cannon is more preferable with increasing 

containment probability.

UNCLASSIFIED

UNCLASSIFIED

log(𝑅𝐶𝐸𝑃50)

𝑝𝑐(𝒙, 𝜽)

Preferable

Less
Preferable
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Accept utility, 𝒖𝑨(𝜿)

• The utility of any state/parameter 𝜽 encodes our 

preference relative to the requirement threshold:

𝑢 𝜽 = sigmoid( ҧ𝑝𝑐 𝜽 − 0.5)

• The accept utility is the expected utility over all 

parameters minus some fixed acquisition cost (e.g. cost to 

productionalize the system) (𝐶𝐴):

UNCLASSIFIED

UNCLASSIFIED

Requirement 
threshold (CEP50)

Utility (𝑪𝑨 = 𝟎)

𝑢𝐴 𝜅 = 𝔼𝜽|𝜅 𝑢 𝜽 − 𝐶𝐴
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Terminal utility, 𝒖𝑫(𝜿)

• Terminal decisions are actions that end the sequential decision 

process, 𝑑 ∈ 𝐷: {𝐴, 𝑅}.

• The terminal utility is maximized over the terminal action utilities 

in accordance with the principle of maximum expected utility:
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𝑢𝐷 𝜅 = max
𝑑 ∈ 𝐷

(𝑢𝐴 𝜅 , 𝑢𝑅 𝜅 = 0)
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Assessing the utility of the 

intermediate decision
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Utility function for Continue Testing

• The continue testing action, 𝑇, addresses the questions: 

• “What is the value in conducting another set of tests in environment 𝑋𝑇?”

• “Would a future test 𝑋𝑇 yield a higher overall terminal utility?”

• We will project out future states by sampling outcomes.

• As we do not know the outcomes before conducting 𝑋𝑇, we can 
simulate future outcomes from the posterior predictive distribution:

𝑃 Ԧ𝑦𝑝𝑝|𝑋, 𝜅 = ∫ ℒ Ԧ𝑦𝑝𝑝 𝜽, 𝑋 𝑃 𝜽| Ԧ𝑦, 𝑋 𝑑𝜽 = 𝒩 Ԧ𝑦𝑝𝑝; 𝑋𝝁𝑇 , 𝜎2 𝕀 + 𝑋𝑉𝑋𝑇

• Ԧ𝑦𝑝𝑝: simulated outcome vectors from the posterior predictive.
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Intercept QE Log(Range) QE×Log(Range) 𝒚𝒑𝒑,𝟏 𝒚𝒑𝒑,𝟐 𝒚𝒑𝒑,𝟑

1 0.2 8.08 1.67 4.52 7.14 5.80

1 1.1 8.69 9.56 3.43 8.55 6.01

1 0.6 8.85 5.31 2.34 7.28 5.44

𝑋𝑇

Posterior Predictive

k

j

m

l

n

Example of 5 random draws 
that represent potential 

outcomes from conducting a 
test
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Sequential decision theory projects future knowledge 

states with a decision tree
• Instead of a decision table, we can visualize the (𝒜, 𝒮, 𝒪) with a decision tree.

• The branching possibilities are in principle endless for continuous states. 

Visualize for a 1-step lookahead.

• Project out 𝑀 knowledge representations (𝜅+) for test option 𝑋𝑇 .
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𝜿𝟏
+

𝜿𝟐
+

𝜿𝑴
+

𝜿 . . .

Forward Prop

(𝑋𝑇 , Ԧ𝑦𝑝𝑝,𝑚)V𝑚
+ = 𝑉−1 + 𝑋𝑇

𝑇𝑋𝑇
−1

𝝁𝑚
+ =  (𝝁𝑉−1 + Ԧ𝑦𝑝𝑝,𝑚

𝑇 𝑋𝑇)𝑉𝑚
+

Update Equations
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Continue Testing utility is the expected terminal utility

• The continue testing utility is the expectation over all future terminal 

utilities minus the cost of performing the test (𝐶𝑇):
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𝜿𝟏
+

𝜿𝟐
+

𝜿𝑴
+

𝜿 . . .

Backward prop

𝑢𝐷(𝜅1
+)

𝑢𝐷(𝜅2
+)

𝑢𝐷(𝜅𝑀
+ )

𝐶𝑇

𝑢𝑇(𝜅)

Note: this is an inductive process. 
Additional future projections follow a 
similar pattern, e.g.,

𝑢𝑇 𝜅+ = 𝔼𝜅++|𝜅+ 𝑢𝐷 𝜅++ − 𝐶𝑇

𝑢𝑇 𝜅 = 𝔼𝜅+|𝜅 𝑢𝐷 𝜅+ − 𝐶𝑇

. . .

Perform 
Average
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• We arrive at the optimal action over the entire action space:

𝑎∗ = argmax
𝑎∈𝒜

𝑢𝑎 𝜅 = argmax
𝑎∈𝒜

𝑢𝐷 𝜅 , 𝑢𝑇(𝜅) = argmax
𝑎∈𝒜

𝑢𝐴(𝜅 , 𝑢𝑅 𝜅 = 0, 𝑢𝑇(𝜅))

• This process repeats sequentially with every test conducted until the 

intermediate action (Continue Testing) is no longer optimal/maximal.

• 𝑋𝑇  consists of 30 test points.

• 𝑎∗ = argmax
𝑎∈𝒜

(0.10
𝐴

, 0
𝑅

, 0.14
𝑇

) = 𝑇

The optimal action 
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Intercept QE Log(Range) QE×Log(Range) Log(POI error)
(true outcome)

1 0.8 9.46 7.56 4.52

1 1.1 8.69 9.56 4.21

1 0.6 8.85 5.31 2.64

~ 27 more rows ~

Before testing

After testing

(mean, std)
Prior Pred: (1100 m, 2164 m)
Post. Pred: (      98 m,       32 m)
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log(POI error)

Summary, Part 1: Applying Bayes to the Mock-Cannon
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log(𝑅𝐶𝐸𝑃50)

𝑝𝑐(𝒙, 𝜽)

𝜃

prior

posterior

Model, Likelihood, Evaluation Prior, Posterior, Knowledge update Setting a prior



40

Summary, Part II: Bayesian Decision Theory
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Principle of 
maximum expected utility 

𝑎∗ ∈ argmax
𝑎′∈ 𝒜

 𝔼𝒮 𝑢𝑎′ 𝑜|𝑠

“Rational agents maximize 
expected utility.”

Decision space Preferences encoded 
in utility function

Sequential decisions 
analyzed by projecting 

future states
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Questions?
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Backup slides
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Define the likelihood of outcomes

• The likelihood is a specification of the stochastic nature of outcomes.
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..

1D Rayleigh 
of radii

1D Log-Rayleigh
of radii exponents

2D Normal 
of positions

1D Normal
of radii exponents

≈𝑌 = log(𝑦)

• To use the Bayesian conjugate prior construction, likelihood needs to be normally distributed.

The likelihood:
ℒ 𝑦 𝜽, 𝒙 = 𝒩(𝑦; 𝒙𝜽𝑇, 𝜎2)

Longitudinal Range error (m)
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(m
)

POI error (m) Y = log(POI error) Y = log(POI error)
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Trajectory model

• Linear motion can be described by Newton’s 2nd law: 

•  Ԧ𝐹𝑔: gravitational force; attraction between earth and munition

• Ԧ𝐹𝑑: drag force; resistive force of an object travelling through a fluid

• Ԧ𝐹𝑙: lift force; responsible for lateral drift

• Rotational kinematics accounted for:

• Overturning moment: associated with lift force

• Spin damping moment: opposes spin of projectile due to 

aerodynamic skin friction

• We are implementing the Indirect Fires Delivery Accuracy 

Program (IFDAP) model. 

• Omits Coriolis and Magnus forces as they have negligible effects

• Fast computation; maintains high fidelity compared to full models.
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M107(HE) 155 mm properties

General Parameters Weapon Data

Time Step 0.01 s Twist rate 20 calibers/rev

Gravitational 
acceleration

9.81 m/s2 Ixx 0.1461 kg m3

Air Cp (specific heat at 
constant pressure)

1005 J/(kg K) Mass 43.091 kg

Air CV (specific heat at 
constant volume)

718 J/(kg K) Projectile diameter 0.155 m

UNCLASSIFIED
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https://en.wikipedia.org/wiki/M107_projectile
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Gravitational Force

• 𝐹𝑔 : gravitational force: attraction between two objects with mass

• Induces symmetric parabolic motion

• 𝐺 : gravitational constant

• 𝑀 : mass of earth
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Drag force

• Drag force: air resistance; reduces projectile range and causes higher angle of 

impact

• 𝑆 : reference cross-sectional area perpendicular to axis of symmetry

• 𝐶𝑑  : drag force coefficient

• 𝜌 : density of air

• 𝑉 : projectile velocity vector

UNCLASSIFIED
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Lift force

• Lift force: perpendicular to the trajectory, tending to pull 

the projectile in the direction its nose is pointed.

• E.g., if the nose is pointed above the trajectory, the lift force 
causes the projectile to climb.

• 𝑆 : reference cross-sectional area 

• 𝐶𝐿𝛼
 : drag force coefficient

• 𝜌 : density of air

• 𝑉 : projectile velocity vector

• Ƹ𝑗 : unit vector along projectile axis of symmetry

• The spinning munition precesses about 𝑉, and the z-

component of the lift force produces a lateral drift in range.
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Rotational effects

• Forces acting on projectile induce rotations, which can be written down using Newton’s 
second law for rotation: 

• Sum of the torques = (moment of inertia) × (angular acceleration)

• Two significant moments

• Overturning moment: 𝜏𝑜 =
1

2
𝜌𝑆𝑑𝐶𝑀𝛼

𝑉2 𝑉 × Ƹ𝑗

• Associated with lift force

• If projectile’s nose lies above its trajectory, a positive overturning moment acts to increase yaw angle

• Spin damping moment: 𝜏𝑠𝑑 = −
1

2
𝜌𝑆𝑑2𝑉𝜔𝐶𝑙𝑝 Ƹ𝑗

• 𝜔 : axial angular speed (radians/second)

• 𝑑 : reference diameter

• Opposes spin of projectile due to aerodynamic skin friction

• Always tends to reduce axial spin

• Rotational deflections from the x-y plane (precession) tend to result in lateral deflections.

UNCLASSIFIED
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Decision theory constraints

• Constraints are imposed upon preferences:

• 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠. Exactly on the following holds: 𝐴 ≻ 𝐵, 𝐵 ≻ 𝐴, or 𝐴~𝐵.

• 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. If 𝐴 ≽ 𝐵 and 𝐵 ≽ 𝐶, then 𝐴 ≽ 𝐶.

• 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦. If 𝐴 ≽ 𝐶 ≽ 𝐵, then there exists a probability 𝑝 such that p𝐴 + (1 − 𝑝)𝐵~𝐶.

• Implies you cannot have a discontinuous jump in preferences once you encounter uncertainty

• Violated with lexicographic preferences

• 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒. If 𝐴 ≻ 𝐵, then for any 𝐶 and probability 𝑝, 𝐴: 𝑝; 𝐶: 1 − 𝑝 ≽ [𝐵: 𝑝; 𝐶: 1 − 𝑝].

• These are the constraints on rational preferences. If follows from this that 

there exists a real-valued function 𝑈 such that

• 𝑈 𝐴 > 𝑈 𝐵  iff 𝐴 ≻ 𝐵.

• 𝑈 𝐴 = 𝑈 𝐵  iff 𝐴~𝐵.
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