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Motivation

‘Most of the time, [Al-generated] synthetic data doesn’t work.

Synthetic data only works under the tightest conditions.
" There must be an empirical basis to synthetic data.

. If you-have physics that is so well understood and a “fantastically
- true physics model...” i

‘Why would you uSé Al to maké synthetic data?’

-paraphrased remarks of DoD Chief Digital and Al Officer, Dr.
Craig Martell -at.2023 CDAO Industry Day and 2024
“Advantage DoD 24" Defense Data & Al Symposium.



Outline

The HGV kinematic model.
On modeling data for synthetic data generation.
The HGV kinematic model transformed.

Acceptability Criteria for Al-Generated Synthetic Data

This presentation is based on

Narrow Digital Twins for High
Throughput High Fidelity Models
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Connecting GenAl to Missile Defense T&E

Missile Defense is a difficult mission to test.

* Heavily reliant on detailed modeling and simulation (M&S).

* High-quality input data is critical path for studies and analyses.
* High-resolution, high-quality M&S is slow.

Current Missile Defense T&E processes incorporate M&S products.

Commercially popular “generative Al” is notoriously low-quality and not
suitable for serious studies. (see Figure left)

We assert that narrow, physics-based generative Al applications can
support M&S and T&E in a rigorous and valid way.




Hypersonic Kinematic Model

Equations of Motion
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Exemplar Trajectories
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Chern, J-S.(1980) Optimum reentry trajectories of a lifting vehicle. Vol 3236. National Aeronautical and Space Administration, Scientific and Technical Information Office.



Exemplar HGV Trajectories
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Modeling Data for Synthetic Generation

Var 1 Var 2 Var 3 Var 4
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HGV Trajectories for M&S

Trajectori \‘
Physics-based Qs Insights ‘@'
7 )

Millions of trajectories on disk
from years of model runs...

Generative Al Option:
Trajectories

Model the repository of HGV trajectories with
Conditional Variational Autoencoder with
Attention (CVAA).

CVAA generates required trajectory >1000x
faster than Physics-based Model.




Validating the Generated Trajectories

Filter With Physics

Apply logical tests derived from physics:

Conservation of Energy

Time Stamps

Smoothness

Internal consistency (ratios)

Thresholds imposed by physical constraints and
limits.

YNNI NN

Discard any trajectories that are not physically-real.

Less than 1% are physically-unreal.

CVAA Generated _ :@}
. . Insigh od
Model Trajectories } m sights -

Validate

Check features of resultant trajectories
against original distributions.

v"  Peak Curvatures
v" Position of Peak Curvatures
... or a functional principal component analysis

v" Check downstream M&S results to detect
differences & sensitivity.



Altitude

Sample CVAA Output for Narrow Twin
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Toward Acceptability Criteria for Al-Generated Data

Narrowness Phenomenology Statistical Confirmation

v Qutput is satisfactorily consistent
with the characteristics of the
training data.

v’ A single or limited number of

v" Well-understood and described by
phenomena are modeled.

governing equations.

v’ Significant empirical foundation. _ -
v Downstream uses are insensitive to

any differences.

A single kinematic model and a Logical tests can be derived and Generated output is compellingly like
single aerodynamic profile in this applied to the generated output. the original.
case.




_ ‘mrISr
Q: Why Would You Use Al to Make Synthetic Data?

The trained CVAA Generative Al model produces
trajectories >1,000x faster than the standard physics
modeling.

A To support high-quality M&S studies at the speed

of relevance.
v Trade a small amount of resolution® for weeks or months

of computational savings. _ _ _ _

p_ . . _ A: To provide more trajectories than can typically be
v'Generative nature allows efficient creation of random produced due to schedule constraints
trajectories that satisfy the required conditions. )

v Conditional architecture allows for specification of ground
range and cross range.

If physics-based acceptability criteria exist, then synthetic data sourced from
Generative Al models could be verified and validated for use in T&E (via M&S studies).
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