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OUTLINE

• Uncertainty Quantification in Deep Learning
• Errant Beam Prediction at SNS Accelerator

- Uncertainty Aware Siamese Classifier
• Uncertainty Aware Booster Surrogate for FNAL

- Uncertainty Aware Deep Regression with single inference



PROBLEM DEFINITION

• We are focused on:
1. Applications with high-dimensional continuous input features
2. Focused on large data sets for DOE applications 
3. Safety constraints that should never or at least rarely be violated.
4. Inference that must happen in real-time at the control frequency of the 

system.

• To tackle some of these points would need:
- Integration of uncertainty quantification (UQ) to provide safety

• Including out-of-distribution uncertainty
- Single inferences model estimation with UQ



UNCERTAINTY QUANTIFICATION

• Deep Learning (DL) models are deterministic transformation 
functions from an input to the output

• DL models are very powerful and expressive
• It is important to know the confidence associated with each 

prediction from a DL models for decision making

Input(s) Output(s)

Uncertainty Types: Aleatoric vs Epistemic uncertainties
• Aleatoric à Data uncertainties
• Epistemic à Out of training distribution uncertainty (OOD)

Aleatoric

Epistemic



COMMON UNCERTAINTY ESTIMATION METHODS IN DEEP LEARNING 

(a) MC Dropout (b) Ensemble

Q1

Create multiple copies of the 
same model architecture 
trained with different 
parameters initialization. 

However, it’s requires a lot 
more memory, it’s slower 
(aggregate results) and 
requires calibration after 
training.

(c) Quantile Regression

Q2

Q3

Qn

Model is trained to predict 
quantiles for the regression 
problem. 

However, we’ll see it doesn’t 
account for out-of-distribution 
uncertainty.Use MC dropout during 

inference with dropout layers 
on can provide uncertainty 
prediction. 

However, it slow and requires 
offline calibration.



POPULAR METHODS FOR UNCERTAINTY QUANTIFICATION IN DEEP LEARNING

• Unfortunately, majority UQ methods for DL do not account for 
OOD uncertainty

• This is critical in optimization or control problems

• For example, different methods yield vastly different uncertainty 
estimation

• Deterministic (Prediction value)

• MC Dropout

• Deep Ensemble

• Gaussian Processes (GP)

Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness (https://arxiv.org/abs/2006.10108)

https://arxiv.org/abs/2006.10108


GAUSSIAN PROCESSES AND RANDOM FEATURES

• Gaussian processes scales very poorly with high dimensions and large datasets
• Random Fourier Features have been used to approximate the kernel (for specific conditions) to 

significantly reduce the computational cost for large dimension and big data problem

• Select research on reducing the high dimension using deep model:
- Random Features for Large-Scale Kernel Machines 

(https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-
Paper.pdf)

- Deep Kernel Learning (https://arxiv.org/abs/1511.02222)
- Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance 

Awareness (https://arxiv.org/abs/2006.10108)
- On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty 

(https://arxiv.org/abs/2102.11409) 
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k(x, y) ⇡ zT (x)z(y)

https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
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https://arxiv.org/abs/1511.02222
https://arxiv.org/abs/2006.10108
https://arxiv.org/abs/2102.11409


DEEP GAUSSIAN PROCESS APPROXIMATION

1. Reduce the high dimensional input feature vector using a neural network

2. Take the reduced latent space as input to the Gaussian Process approximation
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k(h, h0) ⇡ zT (h)z(h0)



BI-LIPSCHITZ CONSTRAINT AND FEATURE COLLAPSE

• A problem when introducing a deep model to reduce latent space is it doesn’t 
guarantee that the distance between the input features is preserved in the latent 
space

• This is typically handled using the bi-Lipschitz constraint:

• The lower bound avoid feature collapse 
• The upper bound ensure feature similarity
• We enforce this constraint using a loss penalty but will revisit other techniques

<latexit sha1_base64="Zv21ICYquQKVoy4UGgHEwglGkjI="></latexit>

L1 ⇤ ||x1 � x2||X  ||h1 � h2||H  L2 ⇤ ||x1 � x2||X



GAUSSIAN PROCESSES FOR UNCERTAINTY QUANTIFICATION IN DEEP LEARNING MODELS

• GP transforms the input space into a higher dimensional 
space with the help of a kernel

• The inferences are based on the distance measure 
between different input samples

• This allows GP to intrinsically provide uncertainty estimates 
including OOD

• GP is limited in terms of Scaling and data reduction 
techniques are usually required for large data sets

• Recent study presented a way to introduce Gaussian 
Process approximation within a neural network

• This allows to use highly expressive deep networks and 
provide uncertainty estimation Spectral Neural Gaussian Process*

https://arxiv.org/abs/2006.10108

https://arxiv.org/abs/2006.10108
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Errant Beam Prediction for SNS Accelerator

• Spallation Neutron Source (SNS) 
accelerator at ORNL delivers 1.4 
MW of a 1 GeV pulsed beam at 60 
Hz

• Ongoing work to predict errant 
beam pulses as well as equipment 
degradation and prognostics

• Continuous data collection is done 
by Differential Current Monitor 
(DCM), Beam Position Monitor 
(BPM) etc.

• Errant beam prediction on one 
pulse before it occurs to potentially 
avoid it
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Data Collection and Preparation

How was the data collected and labeled?
• DCM creates a series of pulses (“macro-pulses”) with each 

macro-pulse composed of ~1k mini-pulses
• An errant-beam data file is composed of 25 “good” 

macro-pulses followed by the errant beam pulse

• A “normal” data file has no errant beam pulse

• We used the macro-pulse before the errant beam pulse (and 
labeled it as anomaly) and macro-pulses from the normal file 
(and labeled them as normal) for our studies

• Our hypothesis: there is a sign about upcoming anomaly in 
macro-pulses even before it happens

• We also need to forecast the fault within a short time window 
to be actionable

• Samples were divided into 3 orthogonal dataset:
• Train (64%)/Test(20%)/Validation(16%)
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Siamese Neural Network (SNN) Model
Traditional classification models vs Siamese model

Rare anomaly

• Traditional DL classification models fails to identify unseen anomalies 
(OOD)

• Similarity based models can correctly classify unseen anomalies. Ex 
Siamese model

• Siamese model does not explicitly model the classification but focuses 
on the similarities

• It learns twin embedding models to transform inputs 
into a latent space

• Distance measures are applied at latent space to 
compute the similarity 
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Data Preparation for SNN Model Training
Reference Normal Pulses

Pulses before Anomalies

Data for the SNN Model
Different Combinations of 
Normal to Normal (labeled 0) 
and Normal to “Before” pulses 
(labeled 1)

1

0

0

1
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Uncertainty aware Siamese model

• We enhanced our Siamese model by adding 
GP layer providing an uncertainty estimate

• Results from similarity model showed a ~4x 
improvement in performance over previously 
published results, it is also much better than a 
vanilla Auto-encoder

• The ROC curves shows true fault detection 
rate above 60% while keeping the false alarms 
below 0.5% (not optimized)

• We introduced an out-of-domain anomaly, 
labelled 1111 (red), the UQ-based model 
performed similar in classifying the anomalies 
and indicated high uncertainty (as expected)
After a fault is predicted, is it possible to 
associate with a particular equipment 
failure?
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DCML live results (Siamese/RF 
upstream/downstream

ML Server Results Control Room Screen

1 Hz60 HzSimilar = 0
Dissimilar = 1

DCML:
• Can run up to 4 

deterministic SNN 
inferences

1 Hz beam (instead of 60 Hz) is 
seen as abnormal

examples

ML Server:
• Can run 20 deterministic 

inferences per pulse at 
60 Hz to compare 
incoming waveform with 
multiple references (can 
be normal or abnormal)

• Create average 
similarity to improve 
results

• Presents results over 
EPICS

Chopper partial failure is seen as 
abnormal beam

Online results
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Path Forward

• Replace deterministic SNN model with Uncertainty Aware SNN for online 
system

• Include beam configuration to the SNN model as conditional inputs
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UNCERTAINTY AWARE BOOSTER SURROGATE 

FNAL Accelerator Complex:

Fermilab Site

Booster ring

Courtesy: Christian Herwig

The Booster receives the 400 
MeV (kinetic energy) beam from 
the Linac

It is then accelerated to 8GeV 
with the help of booster cavities 
and Combined-function bending 
and focusing electromagnets 
known as gradient magnets.

These magnets are powered by 
the gradient magnet power 
supply (GMPS)

Aim:
Reduce beam losses in the FNAL Booster by developing a Machine Learning (ML) model that 
provides an optimal set of actions for GMPS regulator



PROBLEM DEFINITION

• Observed 𝛅I/I for min and max currents: ~10-3 each
Bending 
Magnet 
Current

Time

• Perturbing influences: 
• Recent corrections made
• Other nearby synchrotrons
• Fluctuation of 60 Hz power
• Temperatures, etc

• Available data mostly with the  current 
PID regulator

• Spread in B-field degrades beam 
quality, degrades repeatability, & 
contributes to losses



WORKFLOW

Historical 
Data 

ML-based 
Surrogate

Reinforcement 
Learning

Policy Model 
(baseline)

Calibrated 
Policy Model 

Reinforcement 
Learning

FPGA & 
Online GPU

Transfer Learning
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DATA DRIVEN ML-BASED SURROGATE MODEL

Scope and usage for surrogate model:
● Provide accurate predictions of future time for key variables to be used by the 

reinforcement learning framework

Dataset provided:
● Historical temporal information from key variables was available based on subject matter 

expert input
● Caution: 

○ Data did not include detailed history on commissioning, maintenance, etc.
○ Should conduct a full data inventory assessment 

Physical Asset Digital  Asset



SURROGATE MODEL 

• Physical surrogate models
- Generally well defined boundary condition for areas of application 
- Example: Newtonian physics vs special relativity

• Data Driven ML-based surrogate model
- No clear physics boundary to avoid 
- Must include include UQ that accounts for OOD to avoid RL 

agents exploring areas that are poorly modeled by the surrogate 
model



RESULTS 

• We used a DDQN agent
• Original results used a stacked LSTM model 

yielding ~2x improvement over the original 
control system

- Real-time artificial intelligence for 
accelerator control: A study at the 
Fermilab Booster 
(https://journals.aps.org/prab/abstract/10
.1103/PhysRevAccelBeams.24.104601)

• Second study used a BNN to incorporate 
uncertainty quantification (calibrated) and 
showed improved results and stability:

- Developing Robust Digital Twins and 
reinforcement learning for accelerator 
control systems at the Fermilab Booster 
(https://arxiv.org/abs/2105.12847)

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://arxiv.org/abs/2105.12847


UNCERTAINTY AWARE DL REGRESSION MODEL

Why uncertainty quantification is important in Digital Model?
• Uncertainty Quantification can help determine how well a region of a phase space is modeled by the 

surrogate

• Gaussian Process Approximation (DGPA) method can quantify the regression uncertainties for a DL model
• Unlike most other methods, DGPA does not require multiple inferences and does not require offline 

calibrations making it easy to deploy in online settings



PATH FORWARD

• Study high input dimension UQ for Deep Learning
• Explore online system requirements and approximation trade-offs
• Expand to other areas of Deep Learning application 



THANK YOU!
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