

A Bayesian Decision Theory Paradigm for Test & Evaluation

Jim Ferry

DATAWorks 2023 Alexandria, VA April 27, 2023

Purpose and Overview

- **Purpose**: Develop a Bayesian version of T&E
 - Leverage expert inputs to represent prior knowledge about system being tested
 - Update knowledge with test data
 - Formulate utility functions to represent requirements and other stakeholder priorities
 - Provide test recommendations that optimize expected utility of testing vs. cost of testing

• Overview:

- Classical statistics vs. Bayesian reasoning
- Bayesian Decision Theory (BDT)
- BDT paradigm for T&E
- Decision charts
- Excursion: raw distances vs. hit/miss data
- Summary

AND TET AND THE CTOR. NO

- Classical statistics... Bayesian reasoning... what's the difference?
- With infinite data, not much!
 - Let's flip a coin forever

 - The fraction of H's goes to a limiting value of 0.618034...
 - Statistics and Bayesian reasoning agree: the coin's probability of being heads is p = 0.618034...
- What about with finite data?
 - Example 1: first 60 trials have 33 H and 27 T
 - Example 2: first 6 trials have 4 H and 2 T

- Classical Statistics
 - Estimate *p* from data: $\hat{p} = \frac{h}{n}$
 - Compute quality of solution:
 - *p* in this range consistent with observing *h*:

 $\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ (Wald interval)

- Example 1: n = 60, h = 33
 - $\hat{p} = 0.55$
 - Confidence Interval = [0.4241, 0.6759]
- Example 2: n = 6, h = 4
 - $\hat{p} = 0.6667$
 - Confidence Interval = [0.2895, 1.0439]

- Bayesian Reasoning
 - Elicit prior belief *P*(*p*) about *p*
 - E.g., P(p) = 1 (uniform on [0,1])
 - Update prior belief to posterior P(p|h).

46]

6

- Classical Statistics
 - *p* unknown, but not *random* no model for *p*
 - **95%** confidence intervals
 - For any p in confidence interval, a guarantee that the observed h falls in the middle 95% of outcomes

Example 1:
$$n = 60, h = 33 \checkmark [32]{\text{mid} \\ 95\% \text{ of } h}$$

- $\hat{p} = 0.55$ p = 0.65
- Confidence Interval = [0.4241, 0.6759]
- Example 2: n = 6, h = 4
 - $\hat{p} = 0.6667$
 - Confidence Interval = [0.2895, 1.0439]

- Bayesian Reasoning
 - *p* is a random variable, so a prior necessary • A distribution on p is <u>always available</u> More data = less dependence on prior • 95% containment intervals for P(p|h)[0.4245, 0.6694] Example 1: n = 60, h = 33[0.2904, 0.9010]P(p|h)Example 2: n = 6, h = 42.0 P(p|h)bottom / mid top 1.5 95% 2.5% of *p* 2.5% 1.0 bottom mid top 0.4 p 0.60.2 0.8 1.0 0.5 2.5% 95% of *p* 2.5%

 $^{0.4}$ $^{0.6}$

0.8

1.0

0.2

- Classical Statistics
 - Pearson (1894) and Fisher (1925) [1,2]
 - Algorithmic mindset
 - Process data into an estimate of truth
 - Determine how much confidence one should have in the estimates
 - Provides a large set of tools for processing data and interpreting results
 - Easier to apply than Bayesian reasoning
 - But hard to interpret for complex problems

 K. Pearson, "Contributions to the Mathematical Theory of Evolution," Philosophical Transactions of the Royal Society A, **185**, 71-110, 1894.
 R.A. Fisher, Statistical Methods for Research Workers, Edinburgh: Oliver and Boyd, 1925.
 R.T. Cox, The Algebra of Probable Inference, Johns Hopkins University Press, 1961.
 E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003.

- Bayesian Reasoning
 - Increasingly widespread since 1990s
 - MCMC and VI computational methods
 - Scientific mindset
 - Focus on causal mechanisms by which truth causes the data to occur
 - Bayesian reasoning: the unique extension of classical logic to handle uncertainty [3,4]
 - Harder to apply: requires
 - Distilling key factors that drive behavior of data rather than selecting tools to apply
 - Representing and maintaining probability distributions, rather than computing numbers

Bayesian Decision Theory (BDT)

- Bayesian reasoning: why put in the effort?
 - Modeling causal mechanisms incorporates expert scientific knowledge
 - Maintaining probability distributions is the logically correct way to manage uncertainty
 - A probability distribution <u>always available</u> enables a *killer app*: Bayesian Decision Theory [5]
- Bayesian Decision Theory (BDT)
 - Distills stakeholder priorities into a *utility function* that defines how good a system is
 - Utility function quantifies cost/benefit of Accepting a system given
 - Some quantification of the uncertainty about its performance characteristics
 - The operational environment in which the system is required to perform
 - Utility function + probability distribution over system behavior:
 - Can make optimal decisions about how to test system... accounting for *cost* of tests

- Outcomes
 - *x*
- Context
- Parametrization
- Utility

Decisions

- In Spiral 1 T&E framework, a system is used repeatedly
 - Each use produces an *outcome* x
 - Testing requires outcomes to be known
- First step of framework: map test results to outcomes x
 - Test results can contain unstructured material: text, etc.
 - Map unstructured material into structured form for analysis
- Examples of outcomes:
 - *x* = hit/miss
 - *x* = hit/miss + if miss, failure stage that caused miss
 - *x* = error in meters
 - *x* = detect/non-detect + if detected, error in meters

- Outcomes
 - *x*
- Context
 - C
- Parametrization
- Utility
- Decisions

- Outcomes influenced by (known) context c
- Context can include
 - Categorical data
 - Type of round, type of target, etc.
 - Specified environmental conditions
 - Range, depth, angle to horizon, angle to target, angle to sun
 - Unintentional-but-measured environmental conditions
 - Wind speed, temperature, etc.
 - Note: can be used in modeling outcomes *x*, but not in planning test design
 - Timestamp of test
 - To use for temporal correlations of unmeasured variables
 - Configuration of system
 - Various internal parameter settings

- Outcomes
 - x
- Context
 - C
- Parametrization
 - p
- Utility
- Decisions

- System represented by (unknown) parameter vector p
- Model of outcomes: L(x|p,c)
 - L(x|p,c) = probability of x given parameter vector p and context c
- Thought experiment: L(x|p,c) as simulator
 - For given *p*, run simulator on each *c*
 - For each *c*, produce histogram of *x*
- With infinite data, could find true *p*
 - Would be an excellent model of system
 - Very useful for operational planning
- With finite data... estimate *p*?
- No: update prior over *p* to posterior over *p*

- Outcomes
 - *x*
- Context
 - C
- Parametrization

• p

- Utility
 - U
- Decisions

- Define utility $U(\pi)$ of Accepting system given knowledge π
 - Example: "compliance utility"

• $U_{C}(\pi) \doteq \begin{cases} U_{1} & \text{if } \pi \text{ "good"} \\ -C_{0} & \text{otherwise} \end{cases}$

- In general, utility may depend on
 - True parameter vector *p*
 - Context c in which system used
- But roll up into a metric depending only on knowledge π
 E.g., U(π) = E_c [E_p [U(π, p; c)]]

• Define family $P(p|\pi)$ of probability distributions over p

• Begin with prior $P(p \mid \pi_0)$, update to posterior $P(p \mid \pi_D)$ based on data D

- Outcomes
 - *x*
- Context
 - C
- Parametrization
 p
- Utility
 - U
- Decisions
 - d

- Test event: max of *n* tests, then final decision required
- At *decision points*, pick T&E *actions* that yield optimal results
 - Example of actions: {A,R,T} = Accept/Reject system or continue to Test
 - Example of decision points: make decision $d \in \{A,R,T\}$ after every test
- Utilities: $U(\pi)$ for Accept, 0 for Reject, and each Test costs c_T
- $u(x_{1:k})$ = utility of outcomes being $x_{1:k}$ after k tests
- Backward recursion generates optimal decisions *d*:

$$u(x_{1:k}) = \max \left\{ U(\pi_k), 0, \mathbb{E}_{x_{k+1}} \left[u(x_{1:k+1}) \right] - c_T \right\}$$

Utility of d = Accept
Utility of d = Test \longrightarrow Can compute
because we know
Utility of d = Reject
Distribution of next outcome
given parameter vector

Example: Hit/Miss Data

- Conduct up to *n* = 100 hit/miss trials ("coin flips")
 - Unknown value of *p* = *P*(hit)
 - $\pi = (\alpha, \beta)$: $P(p \mid \pi) = B(p; \alpha, \beta)$ (beta distribution over p)

100

80

60

40

20

- Prior $P(p \mid \pi_0) = B(p; 10, 2.5)$ -
- Various Acceptance utilities $U(\pi)$
 - Long-term: based on true *p* only
 - Short-term: based on knowledge π
 - Mid-term: long/short compromise
 - Compliance:

 $U_{C}(\pi) \propto \begin{cases} 1 & \text{if } P(p \ge 0.8) \ge 95\% \\ -0.3 & \text{otherwise} \end{cases}$

• Focus on *decision charts*

13

Hit/Miss vs. Continuum Measurements

- In practice, a hit/miss call is often derived from a *distance*
 - E.g., a hit is called when the distance to a target is below some given threshold
- Isn't better to use the raw distances to estimate system performance?
 - Yes: one throws away information in the conversion to hit/miss
 - However: this requires understanding the distance distribution
 - In particular, *outliers* can disrupt inference procedures that ignore them
- How much does using raw distances help?
 - Idealized model: some ground-truth 2-d Gaussian distribution
 - Squared distances are exponentially distributed in this case
 - Consider a fixed hit/miss distance threshold
 - True distribution has some (unknown) hit probability p_T
 - What does inference do in the hit/miss and continuum cases?

Hit/Miss vs. Continuum Measurements

- Compute posterior distribution on σ using raw distances
- Convert to distribution on *p*
- Compare to posterior on *p* using hit/miss data
 - Standard deviation = 0.0466 using distance data
 - Standard deviation = 0.0637 using hit/miss data
- Does this hold in general?
 - Find formulas for average variance of *p* in each case
 - As a function of n and p_T
 - Given n and p_T , consider average variance using distances
 - How many times larger does *n* have to be to get same average variance using hit/miss data?
 - Find asymptotic result as $n \to \infty$

METRON 24

Hit/Miss vs. Continuum Measurements: Result

- Nice exact formula!
 - For 2-d Gaussian case

$\frac{p_T}{(1-p_T)\log^2(1-p_T)}$

- Each distance observation worth at least 1.544 hit/miss observations
 - Minimum occurs at $p_T = 0.797$

Number of hit/miss observations each distance observation is worth

Summary

- Test & Evaluation (T&E) is important, but increasingly complex
 - Essential to developing effective, reliable systems
 - How does one do this in a cost-effective manner?
- Bayesian reasoning
 - Models what systems are (*p*) in terms of probability distributions
 - Over the outcomes *x* they deliver
 - In the range of operational contexts *c* required
 - Can update probability distribution over *p* given data
- Bayesian Decision Theory
 - Captures stakeholder priorities in utility function
 - Utility function + probability distribution over system behavior = optimal decision-making for T&E, including cost of testing

