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Purpose and Overview

• Purpose:  Develop a Bayesian version of T&E

• Leverage expert inputs to represent prior knowledge about system being tested

• Update knowledge with test data

• Formulate utility functions to represent requirements and other stakeholder priorities 

• Provide test recommendations that optimize expected utility of testing vs. cost of testing

• Overview:

• Classical statistics vs. Bayesian reasoning

• Bayesian Decision Theory (BDT)

• BDT paradigm for T&E

• Decision charts

• Excursion:  raw distances vs. hit/miss data

• Summary
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Classical Statistics vs. Bayesian Reasoning

• Classical statistics… Bayesian reasoning… what’s the difference?

• With infinite data, not much!

• Let’s flip a coin forever

• HHTHHTTTTTHHHHHTTTHTTHHHTTHHHHTHHTTHHHHHHTTHTTTTHHHHTTTHTTHH…

• The fraction of H’s goes to a limiting value of 0.618034…
• Statistics and Bayesian reasoning agree:  the coin’s probability of being heads is p = 0.618034… 

• What about with finite data?

• Example 1:  first 60 trials have 33 H and 27 T

• Example 2:  first 6 trials have 4 H and 2 T



4

Classical Statistics vs. Bayesian Reasoning

• Classical Statistics

• Estimate p from data:

• Compute quality of solution:

• p in this range consistent with observing h:

• Example 1:  n = 60, h = 33
•
• Confidence Interval   = [0.4241, 0.6759] 

• Example 2:  n = 6, h = 4
•
• Confidence Interval   = [0.2895, 1.0439]

• Bayesian Reasoning

• Elicit prior belief P(p) about p
• E.g., P(p) = 1 (uniform on [0,1])

• Update prior belief to posterior P(p|h).

ˆ hp
n



ˆ ˆ(1 )ˆ 1.96 p pp
n


   (Wald interval)

ˆ 0.55p 

ˆ 0.6667p 

Example 1:  n = 60, h = 33

p

P(p|h) Example 2:  n = 6, h = 4

p

P(p|h)

(Wald doesn’t apply for small n)
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Example 1:  n = 60, h = 33

p

P(p|h)

•

• Example 1:  n = 60, h = 33
•
• Confidence Interval   = [0.4241, 0.6759]

• Example 2:  n = 6, h = 4
•
• Confidence Interval   = [0.2895, 1.0439]

Classical Statistics vs. Bayesian Reasoning

• Classical Statistics

• p unknown, but not random – no model for p
• 95% confidence intervals

• For any p in confidence interval,
a guarantee that the observed h
falls in the middle 95% of outcomes

• Bayesian Reasoning

• p is a random variable, so a prior necessary

• A distribution on p is always available

• More data = less dependence on prior

• 95% containment intervals for P(p|h)

Example 2:  n = 6, h = 4

p

P(p|h)

ˆ 0.55p 

ˆ 0.6667p 

top
2.5% of p

bottom  
2.5%

mid
95%

top
2.5%

bottom  
2.5%

mid
95% of p

p = 0.65

[32 46]
mid
95% of h✓

[0.4245, 0.6694]

[0.2904, 0.9010]
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Classical Statistics vs. Bayesian Reasoning

• Classical Statistics

• Pearson (1894) and Fisher (1925) [1,2]

• Algorithmic mindset

• Process data into an estimate of truth

• Determine how much confidence one should 
have in the estimates

• Provides a large set of tools for processing 
data and interpreting results

• Easier to apply than Bayesian reasoning

• But hard to interpret for complex problems

• Bayesian Reasoning

• Increasingly widespread since 1990s

• MCMC and VI computational methods

• Scientific mindset

• Focus on causal mechanisms by which
truth causes the data to occur

• Bayesian reasoning:  the unique extension of 
classical logic to handle uncertainty [3,4]

• Harder to apply: requires

• Distilling key factors that drive behavior of 
data rather than selecting tools to apply

• Representing and maintaining probability 
distributions, rather than computing numbers

[1] K. Pearson, “Contributions to the Mathematical Theory of Evolution,”

Philosophical Transactions of the Royal Society A, 185, 71-110, 1894.

[2] R.A. Fisher, Statistical Methods for Research Workers, Edinburgh: Oliver and Boyd, 1925.

[3] R.T. Cox, The Algebra of Probable Inference, Johns Hopkins University Press, 1961.

[4] E.T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003.
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Bayesian Decision Theory (BDT)

• Bayesian reasoning:  why put in the effort?

• Modeling causal mechanisms incorporates expert scientific knowledge

• Maintaining probability distributions is the logically correct way to manage uncertainty

• A probability distribution always available enables a killer app:  Bayesian Decision Theory [5]

• Bayesian Decision Theory (BDT)

• Distills stakeholder priorities into a utility function that defines how good a system is

• Utility function quantifies cost/benefit of Accepting a system given

• Some quantification of the uncertainty about its performance characteristics

• The operational environment in which the system is required to perform

• Utility function + probability distribution over system behavior:

• Can make optimal decisions about how to test system… accounting for cost of tests

[5] L.C. Berger, Statistical Decision Theory and Bayesian Analysis, Springer, 2013.
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BDT Framework for T&E:  Spiral 1

• Outcomes

• x

• Context

• Parametrization

• Utility

• Decisions

• In Spiral 1 T&E framework, a system is used repeatedly

• Each use produces an outcome x
• Testing requires outcomes to be known

• First step of framework:  map test results to outcomes x
• Test results can contain unstructured material:  text, etc.

• Map unstructured material into structured form for analysis

• Examples of outcomes:

• x = hit/miss

• x = hit/miss + if miss, failure stage that caused miss

• x = error in meters

• x = detect/non-detect + if detected, error in meters
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BDT Framework for T&E:  Spiral 1

• Outcomes

• x

• Context

• c

• Parametrization

• Utility

• Decisions

• Outcomes influenced by (known) context c

• Context can include

• Categorical data

• Type of round, type of target, etc.

• Specified environmental conditions

• Range, depth, angle to horizon, angle to target, angle to sun

• Unintentional-but-measured environmental conditions

• Wind speed, temperature, etc.

• Note:  can be used in modeling outcomes x, but not in planning test design

• Timestamp of test

• To use for temporal correlations of unmeasured variables

• Configuration of system

• Various internal parameter settings
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BDT Framework for T&E:  Spiral 1

• Outcomes

• x

• Context

• c

• Parametrization

• p

• Utility

• Decisions

• System represented by (unknown) parameter vector p

• Model of outcomes:  L(x |p,c)
• L(x | p,c) = probability of x given parameter vector p and context c

• Thought experiment:   L(x | p,c) as simulator

• For given p, run simulator on each c
• For each c, produce histogram of x

• With infinite data, could find true p
• Would be an excellent model of system

• Very useful for operational planning

• With finite data… estimate p?

• No:  update prior over p to posterior over p

Context c

Outcome x

n = number of
(c,x) pairs

x

c

( | , )L x p c

p

Data D

n
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• Define family P(p |) of probability distributions over p
• Begin with prior P(p |0), update to posterior P(p |D) based on data D

• Define utility U() of Accepting
system given knowledge 

• Example:  “compliance utility”

•

• In general, utility may depend on

• True parameter vector  p
• Context c in which system used

• But roll up into a metric depending only on knowledge 
• E.g.,

BDT Framework for T&E:  Spiral 1

• Outcomes

• x

• Context

• c

• Parametrization

• p

• Utility

• U

• Decisions

1

0

( )C

U
U

C







if   "good"

otherwise

 ( ) ( , ; )c pU U p c     



c

x



n

p Context c

Outcome x

n = number of
(c,x) pairs

( | , )L x p c

( | )P c ( | )P p 

Data D

Parameters of fixed 
distribution over c
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BDT Framework for T&E:  Spiral 1

• Outcomes

• x

• Context

• c

• Parametrization

• p

• Utility

• U

• Decisions

• d

• Test event:  max of n tests, then final decision required

• At decision points, pick T&E actions that yield optimal results

• Example of actions:  {A,R,T} = Accept/Reject system or continue to Test

• Example of decision points:  make decision d ∈ {A,R,T} after every test

• Utilities: U() for Accept, 0 for Reject, and each Test costs cT

• u(x1:k) = utility of outcomes being  x1:k after k tests

• Backward recursion generates optimal decisions d :

 11: 1: 1( ) max ( ),0, ( )
kk k x k Tu x U u x c
 
   

1 1

( | )
( | , )

k

k k

L p
L x p c



 



Utility of d = Accept

Utility of d = Reject

Utility of d = Test Can compute 
because we know

Distribution of 
parameter vector 
given data thus far

Distribution of next outcome 
given parameter vector
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Example:  Hit/Miss Data

• Conduct up to n = 100 hit/miss trials (“coin flips”)

• Unknown value of p = P(hit)
•  = (a,b): P(p |) = B(p;a,b)  (beta distribution over p)

• Prior P(p |0) = B(p;10,2.5)

• Various Acceptance utilities U()
• Long-term:  based on true p only

• Short-term:  based on knowledge 

• Mid-term:  long/short compromise

• Compliance:

• Focus on decision charts

1 ( 0.8) 95%
( )

0.3C

P p
U 

  

if  

otherwise

cT = 0
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Decision Charts for cT = 0

d

d d

d
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Decision Charts for cT = 0.0001

d

d d

d
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Decision Charts for cT = 0.0003

d

d d

d
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Decision Charts for cT = 0.001

d

d d

d
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Decision Charts for cT = 0.003

d

d d

d
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Decision Charts for cT = 0.01

d

d d

d
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Decision Charts for cT = 0.03

d

d d

d



21

Decision Charts for cT = 0.1

d

d d

d
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Hit/Miss vs. Continuum Measurements

• In practice, a hit/miss call is often derived from a distance
• E.g., a hit is called when the distance to a target is below some given threshold

• Isn’t better to use the raw distances to estimate system performance?

• Yes:  one throws away information in the conversion to hit/miss

• However:  this requires understanding the distance distribution

• In particular, outliers can disrupt inference procedures that ignore them

• How much does using raw distances help?

• Idealized model:  some ground-truth 2-d Gaussian distribution

• Squared distances are exponentially distributed in this case

• Consider a fixed hit/miss distance threshold

• True distribution has some (unknown) hit probability pT

• What does inference do in the hit/miss and continuum cases?

threshold = 1.3
T = 1

pT = 57.04%
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Hit/Miss vs. Continuum Measurements

• Compute posterior distribution on  using raw distances

• Convert to distribution on p

• Compare to posterior on p using hit/miss data

• Standard deviation = 0.0466 using distance data

• Standard deviation = 0.0637 using hit/miss data

• Does this hold in general?

• Find formulas for average variance of p in each case

• As a function of n and pT

• Given n and pT , consider average variance using distances

• How many times larger does n have to be to get same
average variance using hit/miss data?

• Find asymptotic result as n →∞



( | )P  distances

( | )P p distances

( | )P p hit/miss

p

std dev = 0.0466

std dev =
0.0637



24

Hit/Miss vs. Continuum Measurements:  Result

• Nice exact formula!

• For 2-d Gaussian case

• Each distance observation worth at least 
1.544 hit/miss observations

• Minimum occurs at pT = 0.797

pT

Number of hit/miss observations each 
distance observation is worth

2(1 ) log (1 )
T

T T

p
p p 
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Summary

• Test & Evaluation (T&E) is important, but increasingly complex

• Essential to developing effective, reliable systems

• How does one do this in a cost-effective manner?

• Bayesian reasoning

• Models what systems are (p) in terms of probability distributions

• Over the outcomes x they deliver

• In the range of operational contexts c required

• Can update probability distribution over p given data

• Bayesian Decision Theory

• Captures stakeholder priorities in utility function

• Utility function + probability distribution over system behavior =
optimal decision-making for T&E, including cost of testing



c

x



n

p Context c

Outcome x

n = number of
(c,x) pairs

( | , )L x p c

( | )P c ( | )P p 

Data D

Parameters of fixed 
distribution over c
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