
Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

On the Validation of Statistical
Software
Ryan Lekivetz
Advanced Analytics Manager
JMP Statistical Discovery

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Outline

• What is Software Testing?
• The Testing Challenge
• Test Selection as a Designed Experiment
• Covering Arrays

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

What is software testing?

• To show the software works as intended.
• To ensure there are no bugs in the software.
• Assures us the software does what it is supposed to

do.

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

What is software testing?

• To show the software works as intended.
• To make sure there are no bugs in the software.
• Assures us the software does what it is supposed to

do.

These approach the problem as showing the software
works, leading us down this path.

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Consider

• “Can you check that this works?”

Vs.

• “Try and break it.”

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

What is software testing?

“Testing is the process of executing a
program with the intent of finding errors.”

G. Myers, The Art of Software Testing, Wiley, 1979

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Where are the bugs?

“Bugs lurk in corners and congregate at
boundaries.”

B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, 1983

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

The testing challenge

1. Selection problem: How do you select test cases from the input
space of the system so that the chance of finding faults, while
staying within budget, is maximized?

2. Quality problem: Can you make informed assertions about “fitness
for use” as testing unfolds?

3. Oracle problem: How do you determine expected behavior for each
test case?

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

The oracle problem

• Discussion of statistical software usually focused on numerical
accuracy

• We often want to go further than this
• How to determine the expected outcome?
• What does it mean if the results change?

How to determine if a test outcome is what was expected

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

The oracle problem

• Software crash
• Timing
• Visualization
• Set of statistics
• Numerics (how close is good enough?)
• And so on…

• May not be existing packages that the test engineer can use

What is the expected result?

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

The testing challenge

1. Selection problem: How do you select test cases from the input
space of the system so that the chance of finding faults, while
staying within budget, is maximized?

2. Quality problem: Can you make informed assertions about “fitness
for use” as testing unfolds?

3. Oracle problem: How do you determine expected behavior for each
test case?

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Common techniques

Repeated running of unit tests as a regression test suite.

Unit Testing
Develop test cases for validating the smallest testable component (i.e., a
unit) of a software package before focusing on the overall integrated
system.

Regression Testing
Ensure the software still works as intended after a change.

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Test selection via Design of Experiments (DOE)

• Given a set of inputs, how to test these effectively and efficiently
• Deterministic*
• Pass/Fail - based on oracle
• Fault detection, rather than model fitting

– Looking for failure-inducing combinations

• What is a good design (test suite)?
– “Bugs lurk in corners and congregate at boundaries.”

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Fundamental principles of factorial effects

Effect hierarchy - i) Lower order effects are more likely to be
important than higher order effects. ii) Effects of the same
order are equally likely to be important.
Effect sparsity - The number of relatively important effects will
be small.
Effect heredity - An interaction is significant only if at least one
of the parent factors involving the interaction is significant.

Wu & Hamada (2011)

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Fundamental principles of factorial effects

Effect hierarchy - i) Lower order effects are more likely to be
important than higher order effects. ii) Effects of the same
order are equally likely to be important.
Effect sparsity - The number of relatively important effects will
be small.
Effect heredity - An interaction is significant only if at least one
of the parent factors involving the interaction is significant.

• What if we think of failure-inducing combinations as important effects?

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Fundamental principles of input combinations

Combination hierarchy: i) Combinations involving fewer inputs are
more likely to be failure-inducing than those involving more inputs.
ii) Combinations of the same order are equally likely to be
important.
Combination sparsity: The number of failure-inducing combinations
will be small.
Combination heredity: A combination is more likely failure-inducing if
at least one of the parent factors involving the interaction is known
to be more likely involved in inducing failures.

Lekivetz & Morgan (2020)

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Empirical Evidence

Cumulative percentage of faults in software systems triggered by interactions
involving number of factors indicated in leftmost column (Kuhn et al., 2004).

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Combinatorial testing

A family of test case selection strategies used to test complex
engineered systems. For a complex engineered system with m inputs,
such as a software system, a strength t covering array will ensure that all
possible combinations of the values for any set of t ≤ m inputs will
appear in the derived test suite at least once.

• Solves the selection problem and the quality problem
- A way to select cases and assert what has been tested (all combinations

involving up to t inputs) – “pseudo-exhaustive”
- Moves beyond one-factor-at-a-time (OFAT) - unit tests as the simplest units

“Bugs lurk in corners and congregate at boundaries.”

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Covering Arrays

Covering Arrays: For a set of factors, a t-covering array (or strength t)
has the property that for any subset of t factors, every possible
combination of levels occurs at least once.

Orthogonal Arrays: Every possible combination occurs the same number
of times.

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Examples

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Why Covering Arrays?

• Cost-efficient
• Selection problem – what to test (DOE)
• Quality problem - if all tests pass a strength t covering array, can

ascertain there are no faults due to t*-factor combinations (t*<=t)
• Disciplined approach to testing
• Another tool in the tool chest
• When do combination sparsity and hierarchy hold?

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

System under test (SUT)
i.e. the software

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Other Considerations

• Fault localization – find the underlying cause when you have a failure.
– Not as easy as it seems

• Constraints (disallowed combinations/forbidden edges)
• Locating / Detecting Arrays
• Random seeds (make sure to keep them)
• Random inputs/equivalence partitioning/boundary-value analysis
• Data set generation*
• Software (ACTS, JMP Pro, Hexawise, Testcover.com, etc…)

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

XGBoost

What is XGBoost?
“An optimized distributed gradient boosting library designed to be
highly efficient, flexible and portable.”

T. Chen and C. Guestrin. 2016. XGBoost: A Scalable Tree Boosting System.

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

XGBoost Selected Inputs

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

XGBoost Selected Inputs

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Results

• Input space: 6*4*325*27 = 2,602,870,608,208,896 points
• Strength 2 CA can be constructed in 25 runs

– 72% 3-coverage
– 35% 4-coverage

• Strength 3 CA can be constructed in 150 runs
– 90% 4-coverage

jmp.com

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

Thanks!
Ryan.Lekivetz@jmp.com

Lekivetz, R. and Morgan, J., 2021. On the Testing of Statistical Software. Journal of Statistical Theory and Practice, 15(4), pp.1-18.

https://rdcu.be/cv7tv

mailto:Ryan.Lekivetz@jmp.com
https://rdcu.be/cv7tv

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

References

1. B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, 1983.

2. R. Bryce & C. Colbourn, “Prioritized interaction testing for pair-wise coverage with seeding and constraints,” Information & Software Technology,
48(10), pp. 960 – 970, 2006.

3. D. Cohen, S. Dalal, M. Fredman, & G. Patton, “The AETG System: An approach to testing based on Combinatorial Design,” IEEE TSE, 23(7), 1997, pp.
437-444.

4. M. Cohen, M. Dwyer & J. Shi, “Constructing interaction test suites for highly configurable systems in the presence of constraints: A greedy
approach,” IEEE TSE, 34(5), 2008, pp. 633-650.

5. C. Colbourn & V. Syrotiuk, “Coverage, location, detection, and measurement,” IEEE 9th International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2016, pp. 19–25.

6. S. Dalal & C. Mallows, “Factor-covering designs for testing software,” Technometrics, 40(3), 1998, pp. 234-243.

7. G. Demiroz & C. Yilmaz, “Cost-aware combinatorial interaction testing,” Proc. of the International Conference on Advances in System Testing and
Validation Lifecycles, 2012, pp. 9–16.

8. I. Dunietz, W. Ehrlich, B. Szablak, C. Mallows, & A. Iannino, “Applying design of experiments to software testing,” Proceedings of the 19th ICSE, New
York, 1997, pp. 205-215.

9. L. Ghandehari, Y. Lei, D. Kung, R. Kacker, & R. Kuhn,“Fault localization based on failure inducing combinations,” IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE), 2013, pp. 168–177.

10. A. Hartman & L. Raskin, “Problems and algorithms for covering arrays,” Discrete Math, 284(1–3), 2004, pp. 149–156.

11. K. Johnson, & R. Entringer, “Largest induced subgraphs of the n-cube that contain no 4-cycles,” Journal of Combinatorial Theory, Series B, 46(3),
1989, pp. 346-355.

Copyr ight © JMP Stat ist ical Discovery LLC. Al l r ights reserved.

References

12. G. Katona, “Two applications (for search theory and truth functions) of Sperner type theorems,” Periodica Mathematica Hungarica, 3(1-2), 1973,
pp. 19-26.

13. D. Kleitman & J. Spencer, “Families of k-independent sets,” Discrete Mathematics, 6(3), 1973, pp. 255-262.

14. R. Lekivetz, & J. Morgan, “On the testing of statistical software,” Journal of Statistical Theory and Practice (2021).

15. R. Lekivetz, & J. Morgan, “Fault localization: Analyzing covering arrays given prior information,” 2018 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C). IEEE, 2018.

16. R. Lekivetz & J. Morgan, “Combinatorial Testing: Using blocking to assign test cases for validating complex software systems,” Statistical Theory &
Related Fields 5.2 (2021).

17. R. Lekivetz, & J. Morgan, “Covering Arrays: Using Prior Information for Construction, Evaluation and to Facilitate Fault Localization,” Journal of
Statistical Theory and Practice 14.1 (2020): 7

18. C. King, J. Morgan, & R. Lekivetz. “Design Fractals: A Graphical Method for Evaluating Binary Covering Arrays,” 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, 2019.

19. J. Morgan, R. Lekivetz, & T. Donnelly. “Covering arrays: Evaluating coverage and diversity in the presence of disallowed combinations,” 2017 IEEE
28th Annual Software Technology Conference (STC). IEEE, 2017.

20. J. Morgan, “Combinatorial Testing: An approach to systems and software testing based on covering arrays,” in Analytic Methods in Systems and
Software Testing, eds., F. Ruggeri, R. Kennett, & F. Faltin, Wiley, pp. 131, 2018.

21. J. Morgan, "Combinatorial Testing,” Wiley StatsRef: Statistics Reference Online (2020): pp. 1-10.

22. G. Myers, The Art of Software Testing, Wiley, 1979.

	Slide Number 1
	Outline
	What is software testing?
	What is software testing?
	Consider
	What is software testing?
	Where are the bugs?
	The testing challenge
	The oracle problem
	The oracle problem
	The testing challenge
	Common techniques
	Test selection via Design of Experiments (DOE)
	Fundamental principles of factorial effects
	Fundamental principles of factorial effects
	Fundamental principles of input combinations
	Empirical Evidence
	Combinatorial testing
	Covering Arrays
	Examples
	Why Covering Arrays?
	System under test (SUT)
	Other Considerations
	XGBoost
	XGBoost Selected Inputs
	XGBoost Selected Inputs
	Results
	Slide Number 28
	References
	References

