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Outline

• What is Software Testing?
• The Testing Challenge
• Test Selection as a Designed Experiment 
• Covering Arrays
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What is software testing?

• To show the software works as intended.
• To ensure there are no bugs in the software.
• Assures us the software does what it is supposed to 

do.



Copyr ight © JMP Stat ist ical  Discovery LLC.  Al l  r ights reserved.

What is software testing?

• To show the software works as intended.
• To make sure there are no bugs in the software.
• Assures us the software does what it is supposed to 

do.

These approach the problem as showing the software 
works, leading us down this path.
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Consider

• “Can you check that this works?”

Vs.

• “Try and break it.”
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What is software testing?

“Testing is the process of executing a 
program with the intent of finding errors.”

G. Myers, The Art of Software Testing, Wiley, 1979



Copyr ight © JMP Stat ist ical  Discovery LLC.  Al l  r ights reserved.

Where are the bugs?

“Bugs lurk in corners and congregate at 
boundaries.”

B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, 1983
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The testing challenge

1. Selection problem: How do you select test cases from the input 
space of the system so that the chance of finding faults, while 
staying within budget, is maximized?

2. Quality problem: Can you make informed assertions about “fitness 
for use” as testing unfolds?

3. Oracle problem: How do you determine expected behavior for each 
test case?
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The oracle problem

• Discussion of statistical software usually focused on numerical 
accuracy

• We often want to go further than this
• How to determine the expected outcome?
• What does it mean if the results change?

How to determine if a test outcome is what was expected
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The oracle problem

• Software crash
• Timing 
• Visualization
• Set of statistics
• Numerics (how close is good enough?)
• And so on… 

• May not be existing packages that the test engineer can use

What is the expected result?
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The testing challenge

1. Selection problem: How do you select test cases from the input 
space of the system so that the chance of finding faults, while 
staying within budget, is maximized?

2. Quality problem: Can you make informed assertions about “fitness 
for use” as testing unfolds?

3. Oracle problem: How do you determine expected behavior for each 
test case?
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Common techniques

Repeated running of unit tests as a regression test suite.

Unit Testing 
Develop test cases for validating the smallest testable component (i.e., a 
unit) of a software package before focusing on the overall integrated 
system.

Regression Testing
Ensure the software still works as intended after a change.
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Test selection via Design of Experiments (DOE)

• Given a set of inputs, how to test these effectively and efficiently
• Deterministic*
• Pass/Fail - based on oracle
• Fault detection, rather than model fitting

– Looking for failure-inducing combinations

• What is a good design (test suite)?
– “Bugs lurk in corners and congregate at boundaries.”
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Fundamental principles of factorial effects

Effect hierarchy - i) Lower order effects are more likely to be 
important than higher order effects. ii) Effects of the same 
order are equally likely to be important.
Effect sparsity - The number of relatively important effects will 
be small.
Effect heredity - An interaction is significant only if at least one 
of the parent factors involving the interaction is significant.

Wu & Hamada (2011)
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Fundamental principles of factorial effects

Effect hierarchy - i) Lower order effects are more likely to be 
important than higher order effects. ii) Effects of the same 
order are equally likely to be important.
Effect sparsity - The number of relatively important effects will 
be small.
Effect heredity - An interaction is significant only if at least one 
of the parent factors involving the interaction is significant.

• What if we think of failure-inducing combinations as important effects?
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Fundamental principles of input combinations

Combination hierarchy: i) Combinations involving fewer inputs are 
more likely to be failure-inducing than those involving more inputs.
ii) Combinations of the same order are equally likely to be 
important.
Combination sparsity: The number of failure-inducing combinations 
will be small.
Combination heredity: A combination is more likely failure-inducing if 
at least one of the parent factors involving the interaction is known 
to be more likely involved in inducing failures.

Lekivetz & Morgan (2020)
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Empirical Evidence 

Cumulative percentage of faults in software systems triggered by interactions 
involving number of factors indicated in leftmost column (Kuhn et al., 2004). 
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Combinatorial testing

A family of test case selection strategies used to test complex 
engineered systems. For a complex engineered system with m inputs, 
such as a software system, a strength t covering array will ensure that all 
possible combinations of the values for any set of t ≤ m inputs will 
appear in the derived test suite at least once.

• Solves the selection problem and the quality problem
- A way to select cases and assert what has been tested (all combinations 

involving up to t inputs) – “pseudo-exhaustive”
- Moves beyond one-factor-at-a-time (OFAT) - unit tests as the simplest units

“Bugs lurk in corners and congregate at boundaries.”
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Covering Arrays

Covering Arrays: For a set of factors, a t-covering array (or strength t) 
has the property that for any subset of t factors, every possible 
combination of levels occurs at least once. 

Orthogonal Arrays: Every possible combination occurs the same number 
of times. 
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Examples
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Why Covering Arrays?

• Cost-efficient
• Selection problem – what to test (DOE)
• Quality problem - if all tests pass a strength t covering array, can 

ascertain there are no faults due to t*-factor combinations (t*<=t) 
• Disciplined approach to testing 
• Another tool in the tool chest
• When do combination sparsity and hierarchy hold?
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System under test (SUT)
i.e. the software
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Other Considerations

• Fault localization – find the underlying cause when you have a failure.
– Not as easy as it seems

• Constraints (disallowed combinations/forbidden edges)
• Locating / Detecting Arrays
• Random seeds (make sure to keep them)
• Random inputs/equivalence partitioning/boundary-value analysis
• Data set generation*
• Software (ACTS, JMP Pro, Hexawise, Testcover.com, etc…)
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XGBoost

What is XGBoost?
“An optimized distributed gradient boosting library designed to be 
highly efficient, flexible and portable.”

T. Chen and C. Guestrin. 2016. XGBoost: A Scalable Tree Boosting System.
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XGBoost Selected Inputs
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XGBoost Selected Inputs
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Results

• Input space: 6*4*325*27 = 2,602,870,608,208,896 points
• Strength 2 CA can be constructed in 25 runs

– 72% 3-coverage
– 35% 4-coverage

• Strength 3 CA can be constructed in 150 runs 
– 90% 4-coverage
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Thanks!
Ryan.Lekivetz@jmp.com

Lekivetz, R. and Morgan, J., 2021. On the Testing of Statistical Software. Journal of Statistical Theory and Practice, 15(4), pp.1-18.

https://rdcu.be/cv7tv

mailto:Ryan.Lekivetz@jmp.com
https://rdcu.be/cv7tv
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