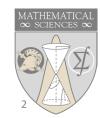


Are we able to classify burn area during active wildfires?

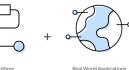
An Investigation into Utilizing Sentinel-1 SAR and Sentinel-2 Imagery with Deep Learning to Assess Burn Area

CDT Garrett Chrisman West Point Advisors: COL Starling, MAJ Park, CPT Sustaita Lockheed Martin Space Advisors: Dr. Lora Koening, Dr. Lynn Montgomery


WEST POINT. Current Capabilities

- Current wildfire burn area & severity utilizes pre and post-wildfire imagery.
- Sentinel-2 & Landsat predominately utilized for this task
 - Equipped with a Multispectral Imager (MSI)
 - Limitations
 - Affected by smoke, clouds, and day/night variations
 - Passover opportunities during wildfire
- Sentinel-1
 - Equipped with C-band Synthetic Aperture Radar (SAR)
 - Synthetic Aperture Rader
 - Unaffected by the above limitations
 - Unique ability to detect and measure surface roughness and moisture content.

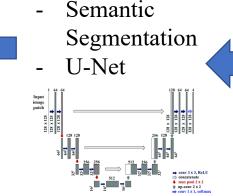
Data Workflow


Satellite Data

- Sentinel 1 SAR & 2 Satellite Imagery
 - Wide array of band imagery
- MTBS Burn Severity

Google Earth Engine

• A planetary-scale platform for Earth science data & analysis



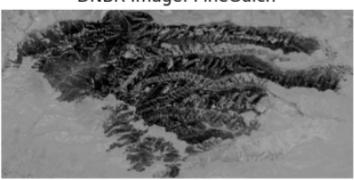
Burn Area Classification

of Area of Interest

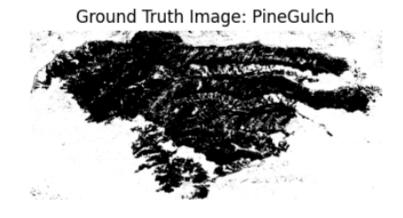
Data Preprocessing

- Resolution
- Gaps in images

CNN = Convolutional Neural Network


$\frac{\text{UNITED STATES MILITARY ACADEMY}}{\text{WEST POINT}} Preprocessing - S2$

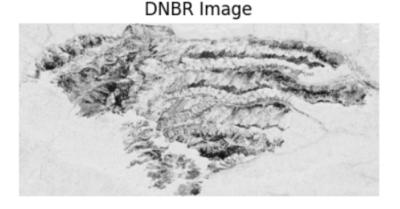
Sentinel-2


- Pull pre and post images from RGB bands
- Cloud mask applied
- Change in Normalized Difference
 - NBR (Normalized Burn Ratio) = (NIR SWIR) / (NIR + SWIR)
 - NIR: Near Infrared band (B8)
 - SWIR : Short-Wave Infrared band (B12)

7 Fires as Samples

- Pine Gulch
- Grizzly Creek
- Cherry Canyon
- Lake Christ
- Decker
- Silver Creek
- Plateau

DNBR Image: PineGulch

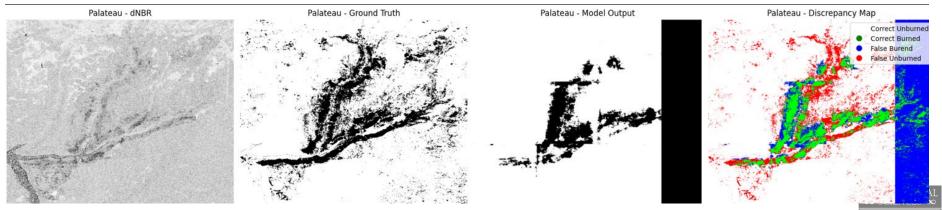


$\frac{\text{UNITED STATES MILITARY ACADEMY}}{\text{WEST POINT}} Preprocessing - S1$

Sentinel-1

- VH band imagery is collected
- Change in burn ratio
- Enhance changes in ratio
- Normalized image values

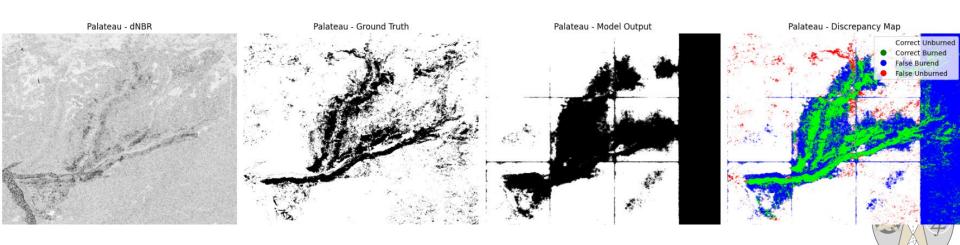
Ground Truth Image



Case 1: Base Case

- Split images into 256x256
- Model trained on 1 fire Pine Gulch
- Tested against 6 other fires
- Under classifying burned areas

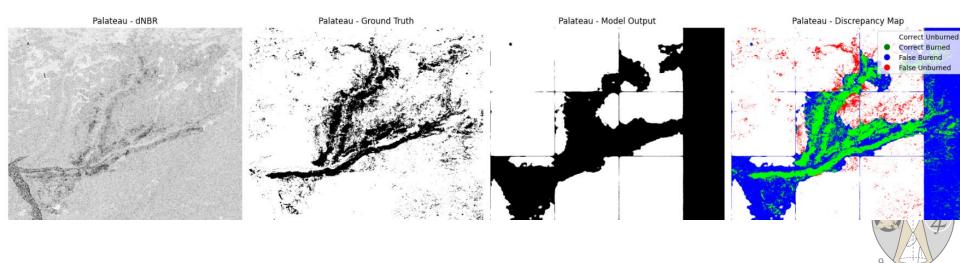
Test Cases



Test Cases

Case 2 & 3: Data Augmentation

- Trained on Pine Gulch and Lake Christ Fires
- Central area region extracted 1280x1280
- Data Augmentation to increase training material and balance burned area groups (mostly burned, partially burned, slightly burned, etc.)
- Performs worse on evaluation metrics due to over classifying area



Test Cases

Case 4: Median, Uniform & Gaussian filters

- Different filter methods for 'Salt and Pepper' showed varying results of success for different fires. With Median preforming the best on average.
- Filtering also aims to address the shadowing effect of SAR imagery

Ground Truth Images:

Different thresholding worked better or worse depending on the type and location of the fire (SE CO, Mountains, etc.) for both ground truth and CNN output.

Further Findings

Thresholding image output:

- Threshold Setting: Set at 0.9 for identifying burned areas.
- **Decision Criterion:** Any prediction below this threshold indicates a burned area.

Future Work:

Case 5: Smoothing

- Explore more complicated methods of 'smoothing functions' to help mitigate this salt and pepper effect such as a separate ML model.

Questions?

