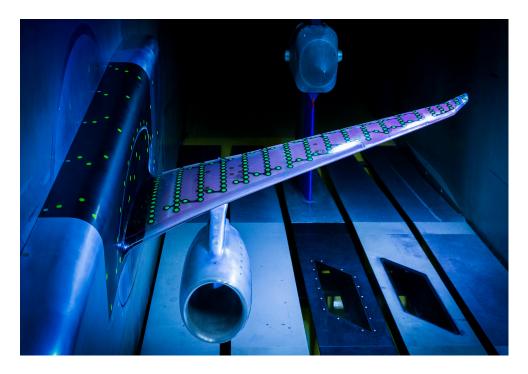
Data-Driven Robust Design of an Aeroelastic Wing

Andrew Cooper, Luis Crespo, and Bret Stanford

What's one takeaway from this talk?

What's one takeaway from this talk?

Identifying robust designs with simulators is a challenging task, but Bayesian Optimization methods can be an effective approach.



https://www.aopa.org/news-and-media/allnews/2018/october/17/flutter-analysis-a-first

• Researchers often interested in evaluating unique wing designs.

https://www.aopa.org/news-and-media/allnews/2018/october/17/flutter-analysis-a-first

- Researchers often interested in evaluating unique wing designs.
- Commonly wish to minimize wing weight but not flutter too much.

https://www.aopa.org/news-and-media/allnews/2018/october/17/flutter-analysis-a-first

- Researchers often interested in evaluating unique wing designs.
- Commonly wish to minimize wing weight but not flutter too much.
- Wing behavior depends on complex aeroelastic properties.

https://www.aopa.org/news-and-media/allnews/2018/october/17/flutter-analysis-a-first

• Field experiments are costly and time-intensive.

- Field experiments are costly and time-intensive.
- Researchers build simulators that model in-flight behavior.

- Field experiments are costly and time-intensive.
- Researchers build simulators that model in-flight behavior.

 $y = f(x) + \epsilon$

- Field experiments are costly and time-intensive.
- Researchers build simulators that model in-flight behavior.

 $y = f(x) + \epsilon$

• Can still take a while to run.

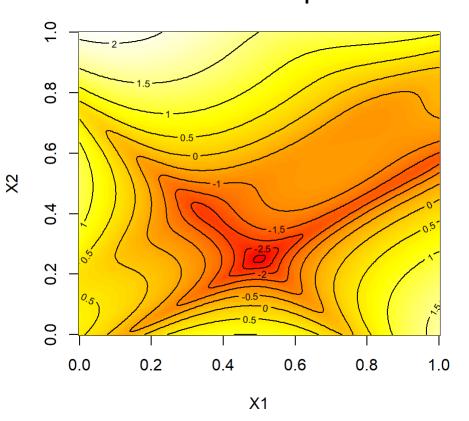
- Field experiments are costly and time-intensive.
- Researchers build simulators that model in-flight behavior.

$$y = f(x) + \epsilon$$

- Can still take a while to run.
- Gradient-based methods can struggle (Robert B. Gramacy 2020).

• Surrogates are **statistical** models that "mimic" simulators.

• Surrogates are **statistical** models that "mimic" simulators.



Simulator Output*

*Goldstein-Price function from Virtual Library of Simulation Experiments (Surjanovic and Bingham 2013)

Simulator Output*

• Surrogates are **statistical** models that "mimic" simulators.

1.0 1.0 Training Data 0.8 0.8 0.6 0.6 X X 0.4 0.4 0.2 0.2 0.0 0.0 0.2 0.8 0.0 0.4 0.6 1.0 0.2 0.0 0.6 0.8 1.0 0.4 X1 X1

Surrogate Prediction

*Goldstein-Price function from Virtual Library of Simulation Experiments (Surjanovic and Bingham 2013)

Simulator Output*

• Surrogates are **statistical** models that "mimic" simulators.

1.0 1.0 Training Data 0.8 0 0.8 0.6 0.6 X X 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.0 0.6 0.8 1.0 0.4 X1 X1

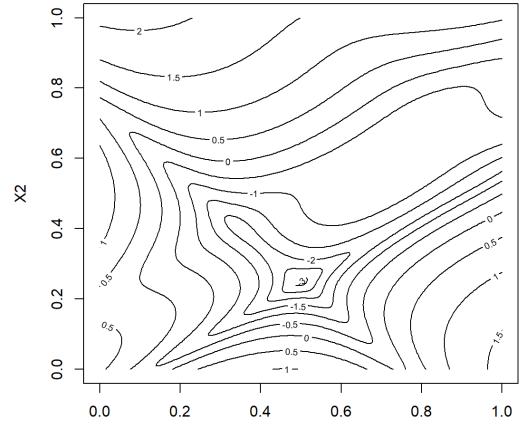
Surrogate Uncertainty

*Goldstein-Price function from Virtual Library of Simulation Experiments (Surjanovic and Bingham 2013)

• Goal is to optimize objective (i.e. minimize weight).

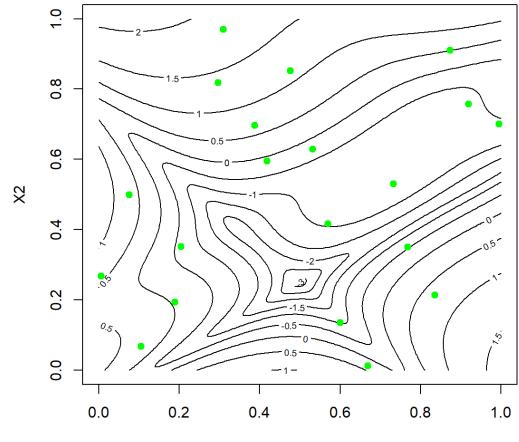
- Goal is to optimize objective (i.e. minimize weight).
- How can we use surrogate models to find an optimal wing design?

- Goal is to optimize objective (i.e. minimize weight).
- How can we use surrogate models to find an optimal wing design?
- Sequential design algorithm known as "Bayesian Optimization".



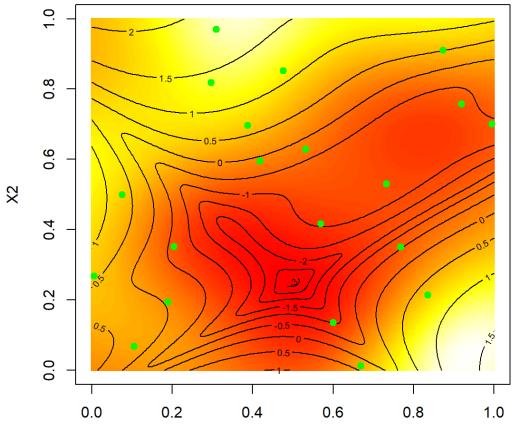
X1

1. Generate initial design to evaluate in simulator

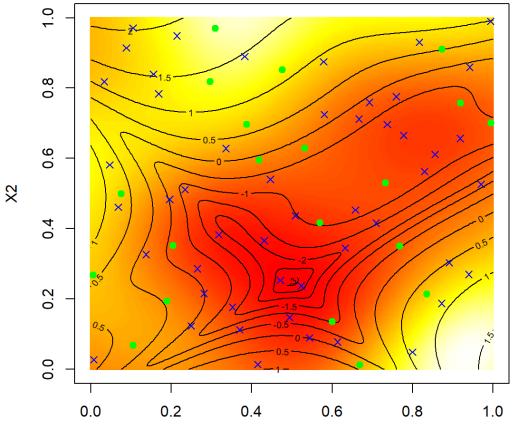


X1

- 1. Generate initial design to evaluate in simulator
- 2. Fit surrogate model to data

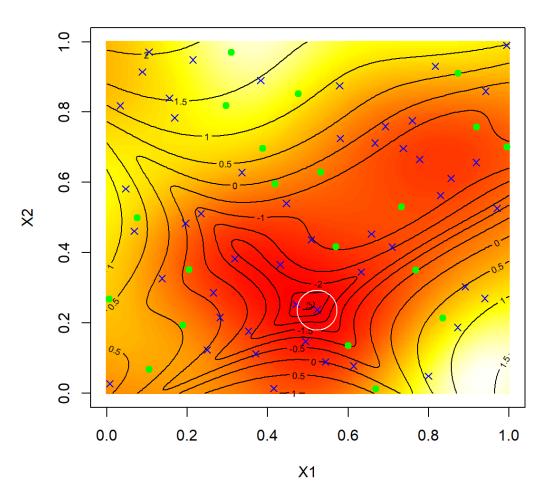


- 1. Generate initial design to evaluate in simulator
- 2. Fit surrogate model to data
- 3. Generate candidate set

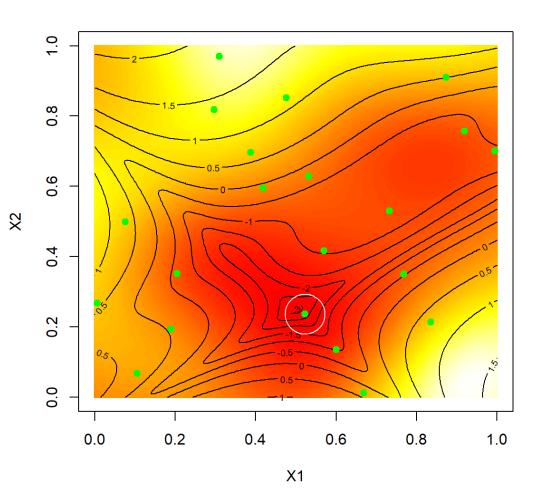


X1

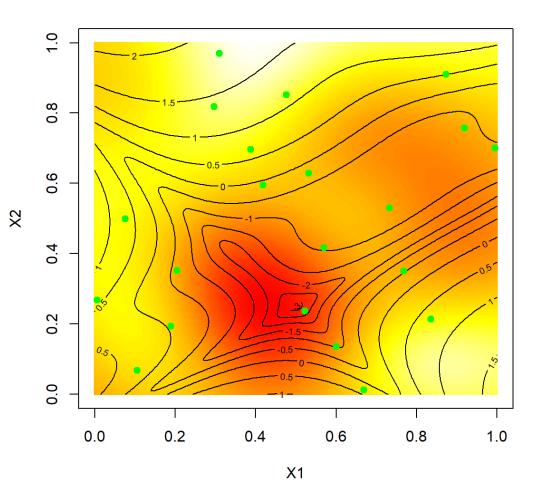
- 1. Generate initial design to evaluate in simulator
- 2. Fit surrogate model to data
- 3. Generate candidate set
- 4. Select new observation that maximizes **surrogate** criteria.



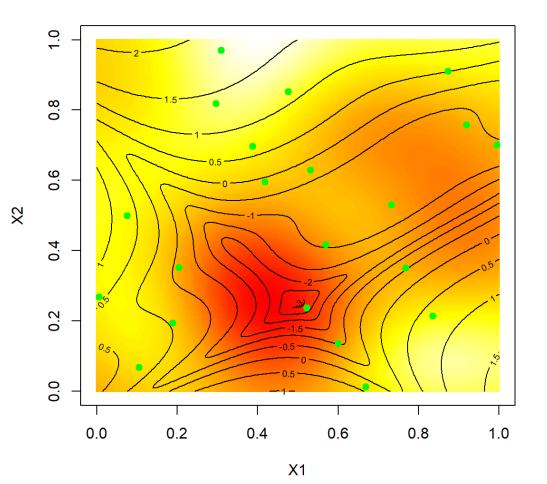
- 1. Generate initial design to evaluate in simulator
- 2. Fit surrogate model to data
- 3. Generate candidate set
- 4. Select new observation that maximizes **surrogate** criteria.
- 5. Acquire new observation, evaluate simulator



- 1. Generate initial design to evaluate in simulator
- 2. Fit surrogate model to data
- 3. Generate candidate set
- 4. Select new observation that maximizes **surrogate** criteria.
- 5. Acquire new observation, evaluate simulator
- 6. Update surrogate model



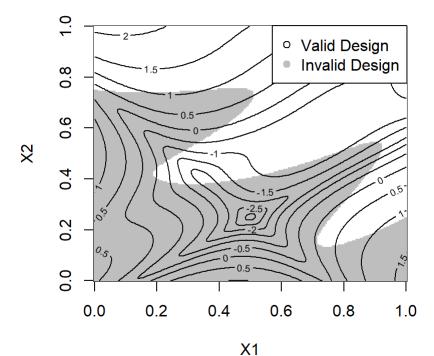
- 1. Generate initial design to evaluate in simulator
- 2. Fit surrogate model to data
- 3. Generate candidate set
- 4. Select new observation that maximizes **surrogate** criteria.
- 5. Acquire new observation, evaluate simulator
- 6. Update surrogate model
- 7. Repeat steps 3-6 until convergence (or budget runs out).



• Flutter requirement adds additional **constraint** to optimization problem.

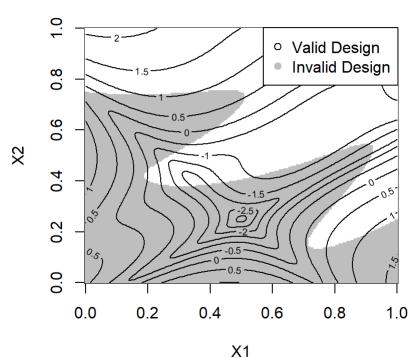
- Flutter requirement adds additional **constraint** to optimization problem.
- Can use surrogates to estimate these as well (Robert B. Gramacy and Lee 2010).

- Flutter requirement adds additional **constraint** to optimization problem.
- Can use surrogates to estimate these as well (Robert B. Gramacy and Lee 2010).

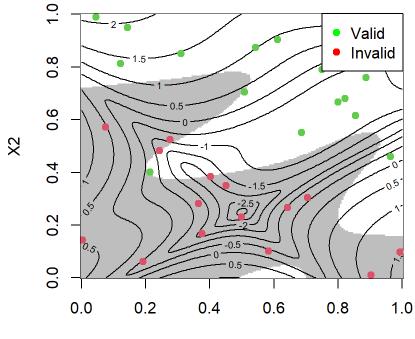


Simulator Output

- Flutter requirement adds additional **constraint** to optimization problem.
- Can use surrogates to estimate these as well (Robert B. Gramacy and Lee 2010).



Simulator Output



Surrogate Estimate

What makes a design "robust"?

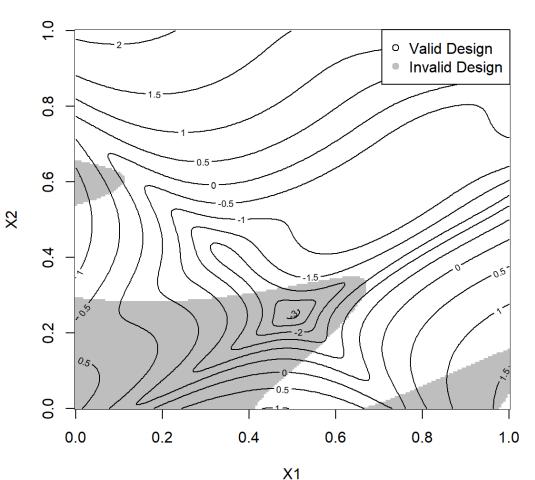
• Flutter behavior depends on factors like...

- Flutter behavior depends on factors like...
- 1. Mach number

- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping

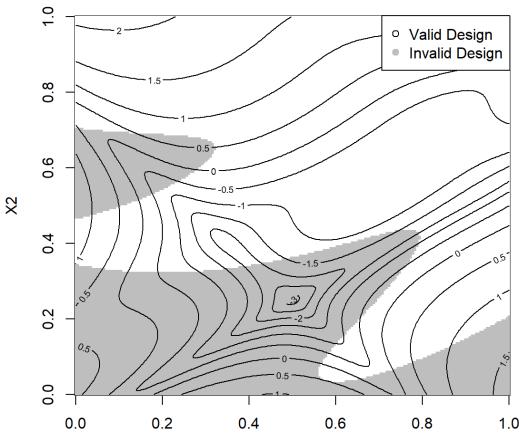
- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping
- Variability can affect feasibility of wing designs.

- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping
- Variability can affect feasibility of wing designs.



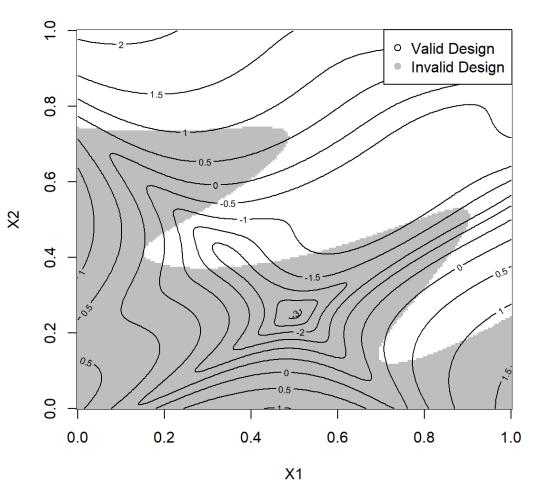
Mach Number = 0.1

- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping
- Variability can affect feasibility of wing designs.



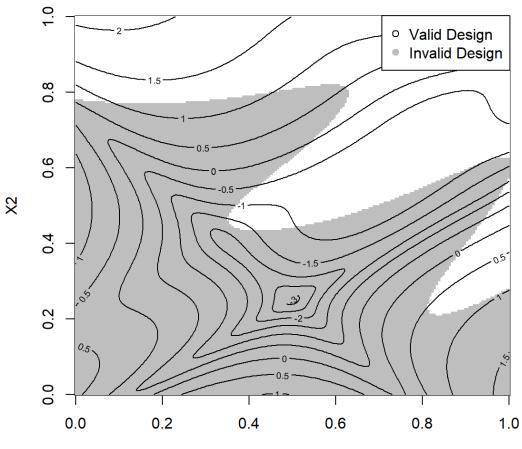
Mach Number = 0.3

- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping
- Variability can affect feasibility of wing designs.



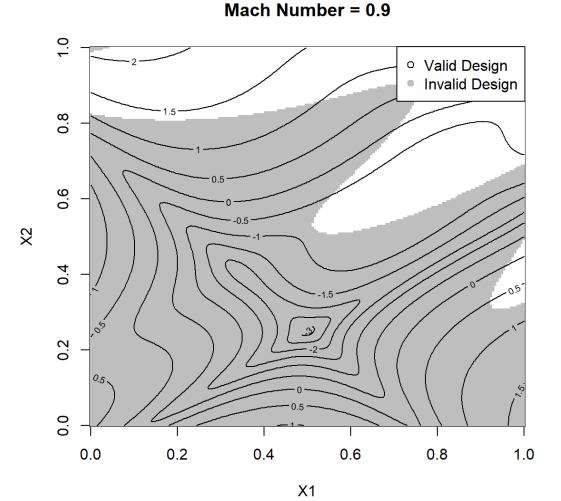
Mach Number = 0.5

- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping
- Variability can affect feasibility of wing designs.

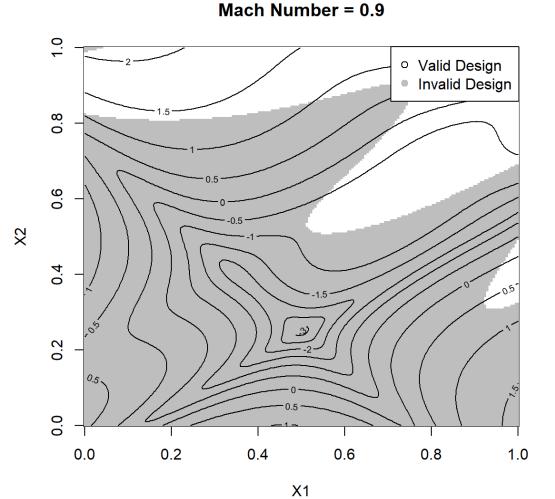


Mach Number = 0.7

- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping
- Variability can affect feasibility of wing designs.



- Flutter behavior depends on factors like...
- 1. Mach number
- 2. Structural damping
- Variability can affect feasibility of wing designs.
- "Robust" = feasible under variety of scenarios.

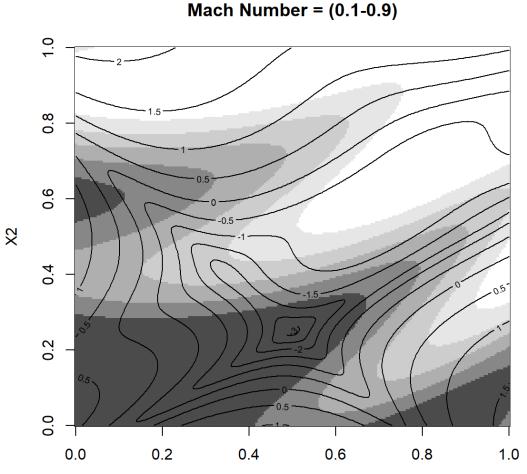


• One option is to evaluate flutter under variety of "scenarios" (Rocchetta and Crespo 2021).

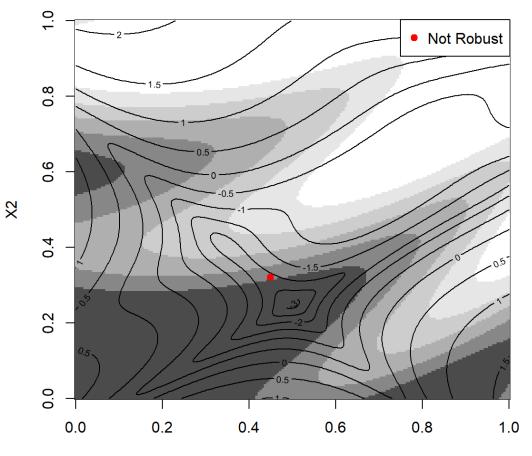
- One option is to evaluate flutter under variety of "scenarios" (Rocchetta and Crespo 2021).
- Each produces unique flutter output.

- One option is to evaluate flutter under variety of "scenarios" (Rocchetta and Crespo 2021).
- Each produces unique flutter output.
- What does it mean now to "satisfy" the constraint?

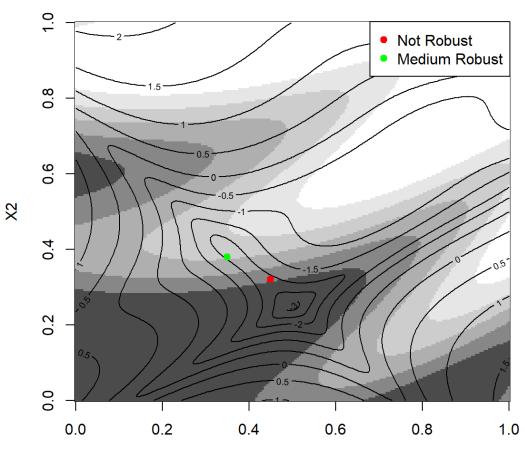
- One option is to evaluate flutter under variety of "scenarios" (Rocchetta and Crespo 2021).
- Each produces unique flutter output.
- What does it mean now to "satisfy" the constraint?



- One option is to evaluate flutter under variety of "scenarios" (Rocchetta and Crespo 2021).
- Each produces unique flutter output.
- What does it mean now to "satisfy" the constraint?

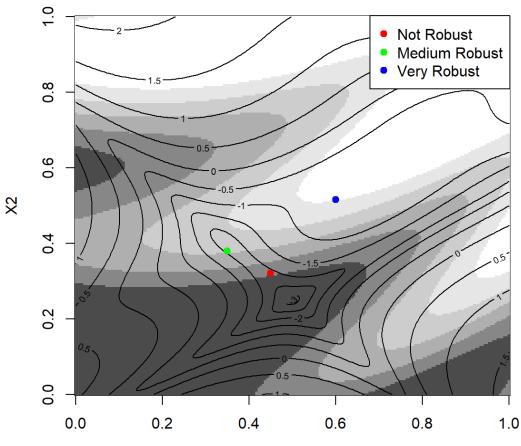


- One option is to evaluate flutter under variety of "scenarios" (Rocchetta and Crespo 2021).
- Each produces unique flutter output.
- What does it mean now to "satisfy" the constraint?



Mach Number = (0.1-0.9)

- One option is to evaluate flutter under variety of "scenarios" (Rocchetta and Crespo 2021).
- Each produces unique flutter output.
- What does it mean now to "satisfy" the constraint?



Mach Number = (0.1-0.9)

References

Gramacy, Robert B. 2020. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC.
Gramacy, Robert B, and Herbert K H Lee. 2010. "Optimization Under Unknown Constraints."
Rocchetta, Roberto, and Luis G Crespo. 2021. "A Scenario Optimization Approach to Reliability-Based and Risk-Based Design: Soft-Constrained Modulation of Failure Probability Bounds." Reliability Engineering & System Safety 216: 107900.

Surjanovic, S., and D. Bingham. 2013. "Virtual Library of Simulation Experiments: Test Functions and Datasets." http://www.sfu.ca/~ssurjano.