# Bayesian Design of Experiments and Parameter Recovery

Christian Frederiksen
Tulane University

Joint work with Nathan Glatt-Holtz, Justin Krometis, Victoria Sieck, and Laura Freeman

### **How Can We Better Estimate Unknowns?**

**Tulane University** 

Consider the problem of recovering  $\theta$  given a model of the form

$$y = G(\theta, d) + \eta$$

where y are observations, d are observation conditions, and  $\eta$  is noise.

Theoretical Models

**Empirical Models** 

Our success will depend on:

- What is measured, *G*
- Where it is measured, d
- How we use our measurements

### **Table of Contents**

**Bayesian Design of Experiments** 

**Tulane University** 

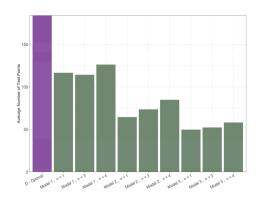
1 Bayesian Design of Experiments

2 Bayesian Parameter Recovery

3 Conclusion

A recent contribution<sup>a</sup> found sequential (classical) DOE generally improved testing efficiency in a simulation study. The study considered linear models both with and without the presence of interaction and quadratic terms.

<sup>a</sup>Ahrens, M., Medlin, R., Pagán-Rivera, K., Dennis, J. "Case study on applying sequential analyses in operational testing". In: Quality Engineering (2022), pp. 1–12

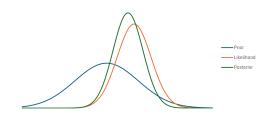


Bayesian DOE and parameter recovery both use the same ingredients:

- Prior  $p_0(\theta)$
- Likelihood  $L(y|\theta,d)$
- Posterior  $p(\theta|d, y)$

Using Bayes Rule we have

$$p(\theta|d,y) \propto L(y|\theta,d)p_0(\theta)$$



Given previous test designs and observations  $D_{N-1} = \{d_k, y_k\}_{k=1}^{N-1}$  we define

$$U_N(d) = \int u(d, y, \theta, D_{N-1}) L(y|\theta, d) p(\theta|D_{N-1}) d\theta dy$$

We then choose

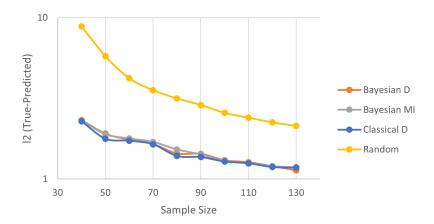
$$d_N = \operatorname{argmax} \, U_N(d)$$

Mutual Information

$$u(d, y, \theta, D_{N-1}) = \log \left( \frac{p(\theta|d, y, D_{N-1})}{p(\theta|D_{N-1})} \right) \qquad u(d, y, \theta, D_{N-1}) = \frac{1}{\det(cov(\theta|y, d, D_{N-1}))}$$

Bayesian D-Optimality

$$u(d, y, \theta, D_{N-1}) = \frac{1}{\det(cov(\theta|y, d, D_{n-1}))}$$



1 Bayesian Design of Experiments

2 Bayesian Parameter Recovery

3 Conclusion

### **Advection Diffusion Inverse Problem**

Bayesian Parameter Recovery

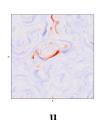
**Tulane University** 

Consider a solute  ${f u}$  diffusing and subject to advection by a flow heta

$$rac{\partial \mathbf{u}}{\partial t}(t,\mathbf{x}, heta,\mathbf{u}_0) + heta(\mathbf{x})\cdot
abla \mathbf{u}(t,\mathbf{x}, heta,\mathbf{u}_0) = \kappa\Delta\mathbf{u}(t,\mathbf{x}, heta,\mathbf{u}_0), \qquad \mathbf{u}(0,\mathbf{x}, heta) = \mathbf{u}_0(\mathbf{x})$$

Given a fixed parameter  $\theta^*$  and noisy observations  $\mathbf u$  can we recover  $\theta^*$ ?



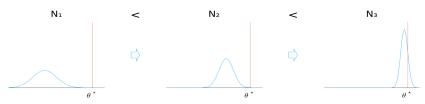


#### **Observation Model:**

$$egin{aligned} y_j &= \mathbf{u}(t_j, \mathbf{x}_j, heta^\star, \mathbf{u}_0) + \eta_j, \ j &= 1, ..., \mathcal{N} \end{aligned}$$

**Posterior Distribution:**  $p_N(\theta|d_N, y_N) \propto L(y_N|\theta, d_N)p_0(\theta)$ 

#### What happens as N grows?



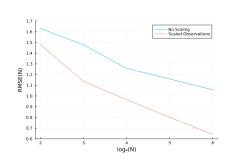
A novel contribution<sup>1</sup> establishes conditions under which posterior consistency holds not only for the advection diffusion problem but an entire class of PDE constrained problems.

<sup>&</sup>lt;sup>1</sup> Frederiksen, C. (2024), "On Bayesian Recovery of Infinite Dimensional Parameters in Partial Differential Equations". [Doctoral Thesis, Tulane University].

#### How can we quantify parameter recovery?

$$\mathsf{RMSE}(N) = \left[ \int_{H} \left\| \theta - \theta^{\star} \right\|_{L^{2}}^{2} p_{N}(d\theta) \right]^{1/2}$$

#### Does this actually work?



The same work<sup>a</sup> presents numerical experiments investigating where theory fails, characterizing the behavior of the posterior, and suggesting strategies which dramatically improve parameter recovery rates.

<sup>&</sup>lt;sup>a</sup>Frederiksen, C. (2024), "On Bayesian Recovery of Infinite Dimensional Parameters in Partial Differential Equations". [Doctoral Thesis, Tulane University].

#### **Table of Contents**

Conclusion Tulane University

1 Bayesian Design of Experiments

2 Bayesian Parameter Recovery

3 Conclusion

## **Putting It All Together**

Conclusion Tulane University

