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How Can We Better Estimate Unknowns?

Consider the problem of recovering 6 given a model of the form

[ y=G(6,d)+n J

where y are observations, d are observation conditions, and 7 is noise.

Our success will depend on:

m What is measured, G
m Where it is measured, d

m How we use our measurements
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A DOE Case Study

A recent contribution? found
sequential (classical) DOE
generally improved testing
efficiency in a simulation
study. The study considered
linear models both with and
without the presence of
interaction and quadratic
terms.

Average Number of Test Puints

?Ahrens, M., Medlin, R.,
Pagén-Rivera, K., Dennis, J. “Case
study on applying sequential
analyses in operational testing”.

In: Quality Engineering (2022), pp.
1-12.
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The Bayesian Ingredients

Bayesian DOE and parameter recovery both use the same ingredients:

m Prior - pp(6)
m Likelihood - L(y|0, d)

m Posterior - p(0|d, y)

——Prior
—— Likelihood

—— Posteri

Using Bayes Rule we have

p(0]d, y) o< L(y|6, d)po(0)
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Sequential Bayesian DOE

Given previous test designs and observations Dy_; = {dk,yk}zlz_ll we define

UN(d):/u(d,y,G, Dn—1)L(y|0, d)p(0|Dn—1)dOdy

We then choose

[ dy = argmax Un(d) J

m Mutual Information m Bayesian D-Optimality

p(0|d,y, Dn_1) 1
o|D “(d7y79,DN—l) -
p(6]1Dn—1) det(cov(fly, d, Dn—1))

u(d7ya 07 DN—I) - |0g (
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Results
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Advection Diffusion Inverse Problem

Consider a solute u diffusing and subject to advection by a flow 6

%(t, x,0,u9) + 0(x) - Vu(t, x,0, 1) = kAu(t,x, 6, 1), u(0,x,6) = up(x)

Given a fixed parameter 6* and noisy observations u can we recover 6*7

Observation Model:

y; = u(tj, x;, 0%, u9) + n;,
i=1,..N
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Posterior Consistency

Posterior Distribution: py(0|dy, yn) o< L(yn|6, dn)po(60)

What happens as N grows?

N1 < N2 < Ns

0" 4

A novel contribution! establishes conditions under which posterior
consistency holds not only for the advection diffusion problem but an
entire class of PDE constrained problems.

1Frederiksen, C. (2024), "On Bayesian Recovery of Infinite Dimensional Parameters in Partial Differential Equations”.
[Doctoral Thesis, Tulane University].
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Numerical Experiments
How can we quantify parameter recovery?
1/2
RUSE(W) = | [ 16~ "I pu(a0)
H

Does this actually work?

The same work? presents numerical

wef experiments investigating where

theory fails, characterizing the

i , behavior of the posterior, and
2.l 3 T suggesting strategies which
ol dramatically improve parameter

recovery rates.

a'Flrederiksen, C. (2024), "On Bayesian Recovery of
Infinite Dimensional Parameters in Partial Differential
Equations”. [Doctoral Thesis, Tulane University].
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Putting It All Together

Conclusion Tulane University

I ’ Better

Posterior
Measure
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Better Utility
Evaluations
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Better DOE
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