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Introduction
• System Resilience

▪ Ability to recover from failures

• Lack of resilience in critical technologies is
dangerous
▪ Disrupt military logistics
▪ Affect DoD's ability to maintain operations
▪ Lead to schedule and budget overruns
▪ Endanger military and civilian lives

• Common Practices
▪ Quantitative resilience metrics

• Contributions
▪ Mathematical models to track and predict

change in performance

RESILIENCE
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System Resilience

Real world disaster management does not 
look like a textbook curve
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• Performance (𝑃) is
▪ Domain dependent
▪ The level of goal achievement of

a system or task

𝑃 𝑖 = 𝑃 𝑖 − 1 + ∆𝑃(𝑖)

𝑃 𝑖 = performance in present time interval 𝑖
𝑃 𝑖 − 1 = performance in previous time interval 𝑖 − 1
∆𝑃 𝑖 = change in performance (assumed I.I.D.)

where
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▪ Regression Models

• Multiple linear regression (MLR), (MLRI), and (PR)

∆ 𝑃 𝑖 𝑀𝐿𝑅= 𝛽0 +

𝑗=1

𝑚

𝛽𝑗 𝑋𝑗 (𝑖)

𝑚 = number of covariates
𝛽0 = baseline change in performance
𝛽𝑗 = coefficients of disruptions and activities

𝑋𝑗 = covariates driving degradation/recovery

ℓ = number of lags

• Modeling change in performance (∆𝑃)

▪ Time Series Models

• Multivariate Vector Auto-Regressive (MVAR), and (MVARMA)

∆ 𝑃 𝑖 𝑀𝑉𝐴𝑅= 𝛽0 +

𝑘=1

ℓ

𝛽𝑘𝑃(𝑖 − 𝑘) +

𝑗=1

𝑚



𝑘=1

ℓ

𝛽𝑗(ℓ+𝑘) 𝑋𝑗 (𝑖 − 𝑘)

Resilience Modeling Approaches



5

Mixture Resilience Models

▪ Multiple linear regression and Multivariate Vector Auto-Regressive (MLR-MVAR)

∆ 𝑃 𝑖 𝑀𝐿𝑅−𝑀𝑉𝐴𝑅= 𝛽0 +

𝑗=1

𝑚

𝛽𝑗 𝑋𝑗 (𝑖) +

𝑘=1

ℓ

𝜙𝑘𝑃(𝑖 − 𝑘) +

𝑗=1

𝑚



𝑘=1

ℓ

𝜙𝑗(ℓ+𝑘) 𝑋𝑗 (𝑖 − 𝑘)

• Modeling change in performance (∆𝑃)

▪ MLR-MVARMA

▪ MLRI-MVAR

▪ MLRI-MVARMA

▪ PR-MVAR

▪ PR-MVARMA
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1) Identify disruptive and restorative activities 𝑋𝑗

2) Collect data

3) Estimate model parameters 𝛽0 and 𝛽𝑗

• Maximum Likelihood Estimation (MLE) 

4) Validate model with statistical measures

• RMSE – Root Mean Squares Error

• PMSE – Predictive Mean Squares Error

• 𝑟𝑎𝑑𝑗
2 – Adjusted coefficient of determination 

• Confidence Intervals

Steps to Apply Resilience Models
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Illustration: 1980 US Recession – Energy Crisis 

• Performance 𝑃 𝑖 is the number of employments in the US

▪ Engineering data was not available

• Covariates in bold are selected by forward and backward stepwise procedures 

Covariates Description Covariates Description

X1 Treasury Yield Curve X5 Personal Consumption Expenditures 

X2 Industrial Production X6 S&P 500 Index Stock Market

X3 Federal Funds Rate X7 Consumer Price Index

X4 Mortgage Rate X8 Crude Oil Prices
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Illustration: Computation Steps

• 11 Models were tested: 3 regressions, 2 time series, 6 mixture models

▪ Different combinations of covariates and lags for each approach

• 4 data subsets were used for model fitting: 50%, 60%, 70%, 80%

• Model fits and goodness-of-fit were computed 

• The best model fit from each approach for each subset considered is plotted 
against each other for analysis 

• The best model fit overall is picked for further analysis 
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Illustration: Validation

Model Covariates Lags Param. RMSE PRMSE 𝒓𝒂𝒅𝒋
𝟐

MLR X8, X3 0 3 0.00524 0.00855 0.93122

MVAR X8, X3, X5 4 17 0.00235 0.00240 0.92277

PR-

MVARMA

X8, X3, X5, 

X2, X6, X4
1 21 0.00192 0.00231 0.98628

Mixture models predict system performance more accurately

Goodness-of-fit measures 
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Illustration: Best Model Overall

• Polynomial Regression and Multivariate Vector Auto-Regressive Moving 
Average (PR-MVARMA)
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Conclusion

• This talk presented
▪ Mathematical modeling approaches to track and predict system resilience

• Informing systematic quantitative tests and evaluation

• Results suggest that
▪ Regression and time series models fit well resilience curves
▪ Mixture models characterize better small perturbations

• Improving tracking and prediction abilities
• Demonstrating superior performance in long-term predictions

• Future research
▪ Optimal allocation of activities to achieve performance threshold on timeline
▪ Development of a predictive system resilience tool
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