

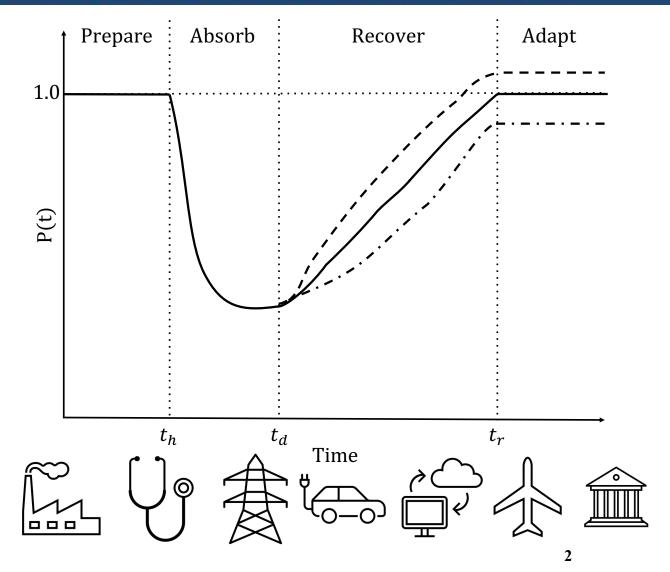
Neural Networks for Quantitative Resilience Prediction

Karen da Mata, University of Massachusetts Dartmouth Priscila Silva, MS, University of Massachusetts Dartmouth Lance Fiondella, PhD, University of Massachusetts Dartmouth

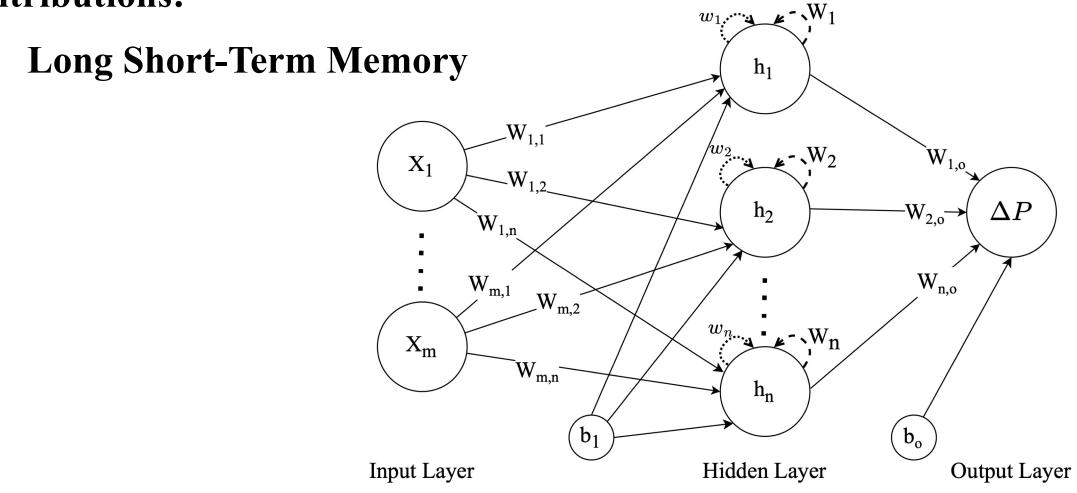
Introduction

- Relevant past studies
 - Resilience metrics, Markov processes, Bayesian Networks and Petri nets;
 - Multiple Linear Regression with Interaction (MLRI).
 - Mostly, to improve future design or limited to smooth trends.
- Predictive Resilience Modeling
 - Track and predict system resilience including negative and positive factor driving deterioration and recovery in the system performance.
 - A discrete resilience curve incorporating covariates can be described as:

 $P(i) = P(i-1) + \Delta P(i)$



Contributions:



Model Assessment

- **Predictive Mean Squared Error (PMSE):** computes the mean discrepancy of the model estimates from the actual data considering the test data.
 - Validation Mean Squared Error (VMSE):

Considers the validation data.

- Mean Squared Error (MSE): Considers the entire data.
- Mean Absolute Percentage Error (MAPE): quantifies the mean accuracy of time-dependent problems.
- Adjusted Coefficient of Determination (r_{adj}^2) : measures the variation in the dependent variable that is explained by the independent variables incorporated into the model.

Feature Selection

There are two steps to select the most relevant subset of covariates:

1. Perform a forward selection search to rank subsets of k covariates according to a heuristic "merit" function:

$$M_s = \frac{k \,\overline{r_{co}}}{\sqrt{k + k(k-1)\overline{r_{cc}}}}$$

2. Create and train models with the highest-ranked subsets of covariates in the previous step. Then, evaluate models and select the one that achieves the highest r_{adj}^2 and smallest overall error.

Illustrations:

Table 1: Covariates collected from January 2020 to November 2022.

Covariate Name		Covariate Name
X_1 Number of Deaths	<i>X</i> ₁₁	Treasury Yield Curve
X_2 Number of Cases	<i>X</i> ₁₂	Standard & Poor's 500 Index Stock Market
X ₃ Stringency Index	<i>X</i> ₁₃	Durable Goods Orders
X ₄ Workplace closures (policies)	X ₁₄	New Orders Index
X_5 Number of visitors to workplace (%)	<i>X</i> ₁₅	Consumer Confidence Index
X_6 Consumer Activity (%)	<i>X</i> ₁₆	Federal Funds Rate
X₇ Unemployment Benefits (million)	<i>X</i> ₁₇	Mortgage Rate
X_8 Overall population fully vaccinated (%)	<i>X</i> ₁₈	Personal Consumption Expenditures
X_9 Number of cases in vaccinated people	<i>X</i> ₁₉	Industrial Production
X_{10} Face covering (policies)	P	COVID-19 US nonfarm jobs

Illustrations:

Table 2: Results of 1st step of
feature selection:

Feature Subset	k	M _s
X ₁₉	1	0.5567882
X_{19}, X_{14}	2	0.6151150
X_{19}, X_{14}, X_4	3	0.6257571
X_{19}, X_{14}, X_4, X_7	4	0.6208308

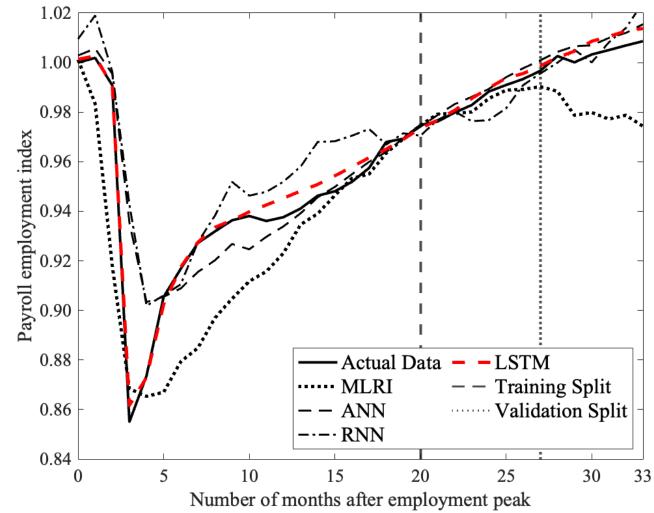
Table 3: NN hyperparameters:

Optimizer	Adam
Learning Rate	0.01
Neurons in the hidden layer	1 15
Max. number of Epochs	1000
Earlier Stopping Condition	Yes

Table 4: Results of 2^{nd} step of feature selection:

Model	Training Split	MLRI	RI ANN RNN		LSTM
Covariates Subset		X_{19}, X_{14}	X_{19}, X_{14}, X_4	X_{19}, X_{14}, X_4, X_7	X_{19}, X_{14}, X_4, X_7
Neurons		-	3	12	7
DMCE	60	0.0002884	0.0000247	0.0000498	0.0000205
PMSE	70	0.0004306	0.0000731	0.0001766	0.000006
VMSE	60	-	0.0000085	0.0000415	0.0000035
VIVISE	70	-	0.0000094	0.0000182	0.0000031
MCE	60	0.000538	0.000245	0.000355	0.000015
MSE	70	0.000553	0.000272	0.000320	0.000017
MAPE	60	1.70	0.81	1.21	0.32
	70	1.73	0.81	1.05	0.29
r_{adj}^2	60	0.6087	0.8154	0.7241	0.9885
	70	0.5978	0.7952	0.7512	0.9867
Average	60	-	546	406	641
Epochs	70	-	609	457	598

Illustrations: Figure 1: Model fit of best models using 60% of the data for training.



7

Conclusion

- Summary
 - Presented three alternative neural network models, including ANN, RNN and LSTM, to model and predict system resilience considering disruptive events and restorative activities that characterize the degradation and recovery in the system performance.
- Results
 - Neural network approaches can accurately and efficiently track and predict system resilience finding application in many domains;
 - All proposed approaches outperformed the MLRI model;
 - LSTMs exhibited an improvement of over 60% in the r_{adj}^2 and a 34.07-fold reduction in the predictive error (PMSE).
- Future Research
 - Explore more challenging data sets including multiple shocks and different applications.
 - Apply alternative neural network model such as Gated Recurrent Units.

Thank you!