

Introduction Methodology Simulation Study Comparison Conclusion

References

A Bayesian Approach for Nonparametric Multivariate Process Monitoring using Universal Residuals

Daniel A. Timme

Florida State University

26 April 2023

Introduction

- Methodology
- Simulation Study
- Comparison
- Conclusion
- References

Profile Definition

$$y_i^t = f(\boldsymbol{x}_i^t) + \varepsilon_i^t, \quad i \in \{1, \dots, n\} = [n], \quad t = 1, 2, \dots$$

where $y_i^t \in \mathbb{R}$, $\pmb{x}_i^t \in \mathbb{R}^d$, and $\varepsilon_i^t \in \mathbb{R}$

Change-Point Detection

$$\begin{split} H_0: f^0 &= f^1 = \cdots = f^T \\ H_A: f^0 &= f^1 = \cdots = f^\tau \neq f^{\tau+1} = \cdots = f^T \end{split}$$

For fixed $\tau < T$, for all $i \in [n], t \in \{1 - m, \dots T\}$,

$$y_i^t = \begin{cases} f(\boldsymbol{x}_i^t) + \varepsilon_i^t, & t \leq \tau & \text{``in-control''} \\ h(\boldsymbol{x}_i^t) + \varepsilon_i^t, & t > \tau & \text{``out-of-control''} \end{cases}$$

where $t \leq 0$ denotes historical, known IC profiles.

Goals

Model Assumptions

- ✓ Linear & Nonlinear f
- ✓ Localized Change h
- ✓ Nonparametric
- ✓ Multivariate predictor

Performance

- ✓ Computationally fast
- \checkmark Low FAR even at large τ
- ✓ Fast detection (low ARL₁)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 回 ● の Q @

Performance Metrics

In-control Average Run Length

Methodology
Simulation Study
Comparison
Conclusion

References

Trial	t = 1	t = 2	t = 3	t = 4	t = 5	t = 6			
1	✓	✓	✓	✓	×				
2	✓	\checkmark	✓	×					
3	✓	×							
4	✓	✓	×						
5	✓	✓	✓	✓	✓	×			
$ARL_0 \simeq \frac{1}{N} \sum_{j=1}^N T_j = 4$									

Out-of-control Average Run Length & False Alarm Rate

Trial	t = 1	t = 2	$t = \tau - 1$	$t = \tau$	$t = \tau + 1$	$t = \tau + 2$
1	✓	✓	√	√	×	
2	~	~	\checkmark	×	×	
3	~	✓	✓	✓	×	
4	✓	✓	×	✓	×	
5	\checkmark	✓	~	✓	~	×

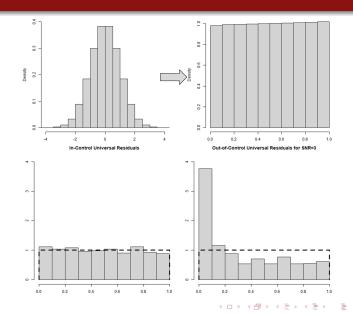
✓: No Change Point Detected

*: Change-Point Detected

$$\begin{split} \mathsf{ARL}_1 &\simeq \frac{1}{N} \sum_{j=1}^N (T_j - \tau) = 1.2 \\ \mathsf{FAR} &\simeq \frac{N_{FA}}{N + N_{FA}} \approx 0.2857 \\ & \leftarrow \mathsf{I} \Rightarrow \mathsf{I} \in \mathbb{P} \ \mathsf{I} = \mathsf$$

Universal Residuals

References



~ ~ ~ ~

Bayesian Inference on the Hypotheses

Introduction

- Methodology
- Simulation Study Comparisor
- Conclusion
- References

$$p_{1}: \text{ Multinomial } p_{2}: \text{ Dirichlet-Multinomial}$$

$$H_{\tau \geq t}: p\left(\overrightarrow{n}^{j}|H_{t,j}\right) = \prod_{j=1}^{t} p_{1}\left(\overrightarrow{n}^{j}|N, \overrightarrow{p}_{0}\right)$$

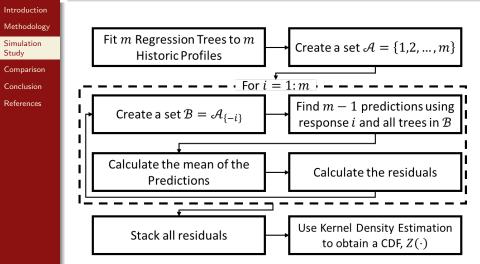
$$H_{\tau=q}: p\left(\overrightarrow{n}^{j}|H_{t,j}\right) = \prod_{j=1}^{q} p_{1}\left(\overrightarrow{n}^{j}|N, \overrightarrow{p}_{0}\right) \prod_{j=q+1}^{t} p_{1}\left(\overrightarrow{n}^{j}|N, (1, \dots, 1)\right) \forall q \in [1, t-1]$$

$$H_{\tau=0}: p\left(\overrightarrow{n}^{j}|H_{t,j}\right) = \prod_{j=1}^{t} p_{2}\left(\overrightarrow{n}^{j}|N, (1, \dots, 1)\right)$$

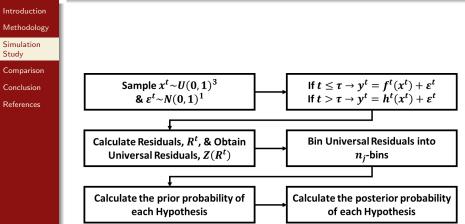
$$p(H_t | \mathsf{data}) = \frac{p(\mathsf{data} | H_t) \pi(H_t)}{\sum_{j=0}^t p(\mathsf{data} | H_j) \pi(H_j)}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Obtaining eCDF from Historic Profiles



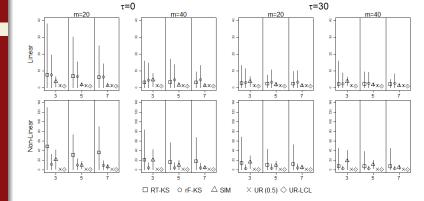
Simulation Flow Chart



・ロト ・ 理ト ・ ヨト ・ ヨー ・ つへぐ

Simulation Results: ARL₁

Conclusion References



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Simulation Results: False Alarm Rate

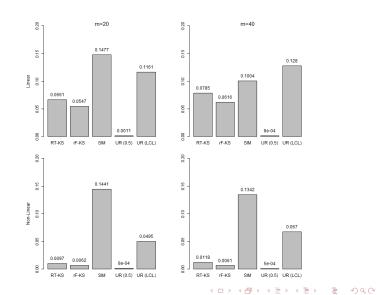
Introduction Methodology

Simulation Study

Comparison

Conclusion

References



Conclusion

Introduction

Methodology

- Simulation Study
- Comparison
- Conclusion
- References

Other Observations

- Maintains small ARL₁ and FAR for $\tau = \{100, 500, 1000\}$
- Faster computation than previous methods
- Versatile method

ARL_1

• Out-performs other methods for ARL1 with both control limits

False Alarm Rate

 $\bullet\,$ Out-performs other methods with the 0.5 control limit

Methodology

Simulation Study

Comparison

Conclusion

References

Questions?

Methodology

Simulation Study Comparison

Conclusion References

Simulation Setup: Signal to Noise Ratio (SNR)

Signal-to-Noise (SNR) Ratio

Localized Change

$$SNR = va^2$$

