Adaptive Operational Testing

Victoria “dB” Sieck
Dr. Fletcher G W Christensen
Outline

• Background and Artificial OT Example
• Moving OT into a Bayesian Framework
• Adaptive OT using Predictive Probability
• Example Results
• Extensions using Informative Priors
• Conclusion
Goal of Proposed Method

• Two overarching acquisition phases: operational testing (OT) and developmental testing (DT)

• Goal: create an efficient and effective OT using Bayesian Methods
 • Analyzing data during testing to support earlier system evaluations
 • Create informative priors for OT using previous testing data (e.g. DT data)

• Research considers the most granular part of system evaluation: evaluating a single question (measure)
Artificial Operational Testing Example
Simulated Example: Electric Semi-Truck

- Transport company procuring an electric semi-truck
- One of the questions (measure) to answer: is the mean number of miles traveled on one charge ≥ 400 miles?
 - Parameter of interest, ϕ, is the mean number of miles
 - Metric threshold that must be obtained, ϕ_0, is 400
- Response variable for design of experiments process: number of miles traveled on one charge
Artificial Example – Factor Management

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
<th>Magnitude of Effect</th>
<th>Likelihood of Encountering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain</td>
<td>Hilly, Flat</td>
<td>High</td>
<td>50%</td>
</tr>
<tr>
<td>Temperature</td>
<td>Hot (> 70º F), Moderate (70º - 50º F)</td>
<td>Medium</td>
<td>4/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/9</td>
</tr>
<tr>
<td>Wind</td>
<td>Good, Moderate, Poor</td>
<td>Medium</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3</td>
</tr>
<tr>
<td>Payload Type</td>
<td>Refrigerated, Non-Refrigerated</td>
<td>High</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50%</td>
</tr>
<tr>
<td>Weight</td>
<td>Heavy (≥ 40k lbs), Light(< 40k lbs)</td>
<td>High</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50%</td>
</tr>
</tbody>
</table>
Current Operational Testing Process

• Selected an experimental design
 • Main effects and two-way interactions (excluding wind)
 • 2^4 Full Factorial, five replicates
 • Design has 80% power, with 80% confidence

• Test is executed

• Measures are evaluated
 • If $\phi \geq \phi_0$, the measure is evaluated as met
 • If $\phi < \phi_0$, the measure is evaluated as not met
Moving Operational Testing into a Bayesian Framework
A Bayesian Framework for Operational Testing

• Augmenting the current test design process
 • Formalizing the current underlying ANOVA structure (when not explicitly used)
 • Including prior selection to the test design process

• Evaluating a measure: calculate the posterior probability of a system obtaining the metric threshold and compare that to a certainty threshold, $\theta_T = 0.8$:
 • If $\Pr(\phi \geq 400) \geq 0.8$, evaluate the measure as met
 • If $\Pr(\phi \geq 400) < 0.8$, evaluate the measure as not met
Electric Semi-Truck Example: Bayesian Set-Up

• Distribution of miles traveled within groups: \(y_{ijklmp} \mid \mu_{ijklm} \sim N\left(\mu_{ijklm}, \frac{1}{\tau}\right) \), where

\[
\mu_{ijklm} = \eta + \alpha_i + \beta_j + \omega_k + \gamma_l + \delta_m + (\alpha\beta)_{ij} + (\alpha\gamma)_{il} + (\alpha\delta)_{im} + (\beta\gamma)_{jl} + (\beta\delta)_{jm} + (\gamma\delta)_{lm}
\]

• Reference cell ANOVA model (baseline parameter: \(\eta \), the first level of each factor)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
<th>Model Parameter</th>
<th>Weakly Informative Priors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain</td>
<td>Hilly</td>
<td>(\alpha_i)</td>
<td>(\Pr(\alpha_1 = 0) = 1)</td>
</tr>
<tr>
<td></td>
<td>Flat</td>
<td></td>
<td>(p(\alpha_2) \sim N(50,10000))</td>
</tr>
<tr>
<td>Temperature</td>
<td>Hot (> 70º F)</td>
<td>(\beta_j)</td>
<td>(\Pr(\beta_1 = 0) = 1)</td>
</tr>
<tr>
<td></td>
<td>Moderate (70º - 50º F)</td>
<td></td>
<td>(p(\beta_2) \sim N(50,2500))</td>
</tr>
<tr>
<td>Wind</td>
<td>Good</td>
<td>(\omega_k)</td>
<td>(\Pr(\omega_1 = 0) = 1)</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>(p(\omega_2) \sim N(-25,2500))</td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td></td>
<td>(p(\omega_3) \sim N(-50,2500))</td>
</tr>
<tr>
<td>Payload Type</td>
<td>Refrigerated</td>
<td>(\gamma_l)</td>
<td>(\Pr(\gamma_1 = 0) = 1)</td>
</tr>
<tr>
<td></td>
<td>Non-Refrigerated</td>
<td></td>
<td>(p(\gamma_2) \sim N(100,10000))</td>
</tr>
<tr>
<td>Weight</td>
<td>Heavy ((\geq 40k) lbs)</td>
<td>(\delta_m)</td>
<td>(\Pr(\delta_1 = 0) = 1)</td>
</tr>
<tr>
<td></td>
<td>Light (< 40k lbs)</td>
<td></td>
<td>(p(\delta_2) \sim N(100,10000))</td>
</tr>
</tbody>
</table>

• \(2^4 \) full factorial, five replicates = 80 test events
Bayesian Mission Mean

• Analysis using an operational focus – “mission sets”
• Mission Sets: Combination of factor levels that represent an operational environment
• Obtaining ϕ, mission mean approach:
 • Sample mission sets
 • Use mission sets and posterior draws induce a distribution on ϕ
 • ϕ is then a mixture distribution of random mission means, μ_{ijklm}
• Marginalize out the mission sets to evaluate the measure
• Bayesian Perspective: grand mean is a weighted average of random variables and mission mean is a random selection of random variables
Bayesian Grand Mean Approach vs Bayesian Mission Mean Approach
Adaptive Operational Testing: Interim Analysis
Adaptive Operational Testing: Interim Analysis

• If we accomplished the entire experimental design for the test
 • Evaluate a measure as met if \(\Pr_{\phi|S}(\phi \geq \phi_0) > \theta_T \), for all seen data, \(S \), and for some threshold value, \(\theta_T \)
 • Evaluate a measure as not met if \(\Pr_{\phi|S}(\phi \geq \phi_0) \leq \theta_T \)

• In a Bayesian framework, inferences are constantly updated as data are obtained

• We can determine if a test could end early based on \(\phi \) and test hypothesis, using the predictive probability of evaluating a measure as met at test completion (PP)
 • Lee and Liu (2008) PP proposed for a binomial data model / beta prior
 • Liu and Dressler (2018) extended it to a continuous response with a recognizable posterior
 • Zhou et al. (2018) suggested general framework for using PP for such a case, but did not use it

• Two examples of clinical trials that successfully incorporated PP: I-SPY 2 (ongoing) and a completed drug trial adding trastuzumab to chemotherapy
Adaptive Operational Testing

- Using the Bayesian framework, what if we can see interim data?
- Introduce θ_L, θ_U, and PP into the analysis
- Establish rules for when PP can be calculated
 - Frequency of interim data
 - Number of observations to see before calculating PP (n_f)
Adaptive Operational Testing: Calculating PP

- **PP**: For any already seen data, S, and any unseen data, U, what is $\Pr(\phi > \phi_0|S,U)$, and does it exceed θ_T?

- **PP** is calculated by marginalizing over all possible values of U

 $PP = \Pr(Y: \Pr(\phi \geq 400|S,U) > \theta_T)$

 $= E\{I[\Pr(\phi \geq 400 | S, U) \geq \theta_T]|S\}$

- OT requires a more complex sampling method than currently being implemented
Results Using Weakly Informative Priors
Electric Semi-Truck Example: Proposed Analysis Set-Up

- 2^4 full factorial, five replicates = 80 test events
- Distribution of miles traveled within groups:

\[
y_{ijklm} \mid \mu_{ijklm} \sim N\left(\mu_{ijklm}, \frac{1}{\tau}\right), \text{ where}
\]

\[
\mu_{ijklm} = \eta + \alpha_i + \beta_j + \omega_k + \gamma_l + \delta_m + (\alpha\beta)_{ij} + (\alpha\gamma)_{il} + (\alpha\delta)_{im} + (\beta\gamma)_{jl} + (\beta\delta)_{jm} + (\gamma\delta)_{lm}
\]

- OT Data Sets: 21 data sets, changing…
 - true η value (seven different values)
 - the $N(0,1)$ errors (three different transformations)

- Data examples
 - A baseline group (η) observation in Data set 3 comes from a $N(347, 50^2)$
 - A flat (otherwise baseline) group observation in Data Set 3 comes from a $N(397, 54^2)$
 - A baseline group observation in Data set 10 comes from a $N(347, 100^2)$
 - A flat (otherwise baseline) group observation in Data set 10 comes from a $N(397, 109^2)$
Weakly Informative Prior (WIP) Results

Error Transformation 1 (Smallest Variance)

Error Transformation 2

Error Transformation 3 (Largest Variance)
Weakly Informative Prior (WIP) Results

Compared to using posterior probability after test completion, the proposed process using PP correctly ends testing early in 17 of 21 cases.

Key Takeaway: outside a narrow range of η, PP is conclusive.
Informative Priors
Creating Informative Priors by Incorporating Previous Information

• Instead of weakly informative priors, informative priors can be created using previous test data, making use of available information

• Using subject matter expert opinion to build informative priors (See Bedrick, Christensen, and Johnson, 1996)

• Summary statistics from previous (related, but dissimilar) tests (See Dewald, Holcomb, Parry, and Wilson, 2016)

• Traditional Approach – exchangeable data

• Variants of power priors – related, but non-exchangeable data
Power Prior Variants

• Normalized Power Prior (NPP):
 • Data determines how much the previous data is down-weighted to account for dissimilarities
 • Model parameters have to be the same in both the historical and current data models
 \[p(\theta, a_0|D_0) \propto \left[\frac{(L(\theta|D_0))^{a_0} \pi_0(\theta)}{\int (L(\theta|D_0))^{a_0} \pi_0(\theta) d\theta} \right] \pi_0(a_0) I_A(a_0) \]
 • See Duan, Ye, and Smith (2006)

• Normalized Partial Borrowing Power Prior (NPBPP):
 • Relaxes the NPP assumption that the model parameters have to be the same in both the historical and current data models
 • Requires a more computationally inefficient Metropolis-within-Gibbs sampler
 • See Chen, Ibrahim, Lam, Yu, and Zhang (2011)

• Conditional Normalized Partial Borrowing Power Prior (CPBPP):
 • Proposed variant of NPBPP that is more computationally efficient
 • Manuscript in preparation
Conclusion

• Ultimately, moving into a Bayesian framework provides OT more flexibility by allowing testers to implement interim analysis.

• Interim analysis allows testers to stop testing early when enough information has been obtained, saving both time and resources (cost).

• The method can be adjusted to incorporate information from previous testing
Questions?

vcarrillo314@unm.edu